
1

ReVVerT 2011

Tracing of Requirements and Test Cases 

Dr. Joachim Wegener, Nico Beierle, Peter Kruse, Dr. Robinson-Mallett

Berner & Mattner Systemtechnik GmbH

joachim.wegener@berner-mattner.com

Agenda

• Introduction

• Demands for Requirements Tracing in Industrial Practice

• Classification-Tree Method (CTM)

• Integration of Requirements Management and CTM

– Linking Requirements and Test Cases

– Visualization of Requirement Changes

• Summary and Future Work



2

Requirements Tracing in Industrial Practice

Demands result from

• Standards, e.g. ISO 15504 and ISO 26262

– Verification that each requirement has been

implemented (especially for safety requirements)

– Verification that the system has been tested for

each requirement ⇒ Requirements Coverage

• Change Management

• Variant Management, Configuration Management

• Project Management

V Model

Detailed

Design

Implementation

SW 

Integration

Production

Product

Integration

System 

IntegrationSystem Design

Software 

Design

Product Design

Requirements
Specification

Intentions,

Objectives



3

SPICE (Software Process Improvement and Capability 

Determination, ISO/IEC 15504)

Detailed

Design

Implementation

SW 

Integration

Production

Product

Integration

System 

IntegrationSystem Design

Software 

Design

Product Design

Requirements
Specification

Intentions,

Objectives

Consistency and 
bidirectional traceability 

between customer 

requirements and system 
requirements

SPICE (Software Process Improvement and Capability 

Determination, ISO/IEC 15504)

Detailed

Design

Implementation

SW 

Integration

Production

Product

Integration

System 

IntegrationSystem Design

Software 

Design

Product Design

Requirements
Specification

Intentions,

Objectives

Consistency and 
bidirectional traceability 

between system 
requirements and system 

architecture



4

SPICE (Software Process Improvement and Capability 

Determination, ISO/IEC 15504)

Detailed

Design

Implementation

SW 

Integration

Production

Product

Integration

System 

IntegrationSystem Design

Software 

Design

Product Design

Requirements
Specification

Intentions,

Objectives

Consistency and 
bidirectional traceability 

between system 
requirements and software 

requirements

SPICE (Software Process Improvement and Capability 

Determination, ISO/IEC 15504)

Detailed

Design

Implementation

SW 

Integration

Production

Product

Integration

System 

IntegrationSystem Design

Software 

Design

Product Design

Requirements
Specification

Intentions,

Objectives

Consistency and 
bidirectional traceability 

between system 
architecture and software 

requirements



5

SPICE (Software Process Improvement and Capability 

Determination, ISO/IEC 15504)

Detailed

Design

Implementation

SW 

Integration

Production

Product

Integration

System 

IntegrationSystem Design

Software 

Design

Product Design

Requirements
Specification

Intentions,

Objectives

Consistency and 
bidirectional traceability 

between software 
requirements and software 

units

SPICE (Software Process Improvement and Capability 

Determination, ISO/IEC 15504)

Detailed

Design

Implementation

SW 

Integration

Production

Product

Integration

System 

IntegrationSystem Design

Software 

Design

Product Design

Requirements
Specification

Intentions,

Objectives

Consistency and 

bidirectional traceability 
between software units and 

their test specifications



6

SPICE (Software Process Improvement and Capability 

Determination, ISO/IEC 15504)

Detailed

Design

Implementation

SW 

Integration

Production

Product

Integration

System 

IntegrationSystem Design

Software 

Design

Product Design

Requirements
Specification

Intentions,

Objectives

Consistency and 
bidirectional traceability 

between software 
requirements and software 

test specifications

SPICE (Software Process Improvement and Capability 

Determination, ISO/IEC 15504)

Detailed

Design

Implementation

SW 

Integration

Production

Product

Integration

System 

IntegrationSystem Design

Software 

Design

Product Design

Requirements
Specification

Intentions,

Objectives

Consistency and 
bidirectional traceability 

between system 
requirements and system 

test specifications



7

Road Vehicles – Functional Safety (ISO 26262) 

Subset of typical demands

• To evaluate the completeness of test cases and to demonstrate that 

there is no unintended functionality, the coverage of requirements at 

the software unit level shall be determined.

• To evaluate the completeness of tests and to obtain confidence that 

there is no unintended functionality the coverage of requirements at 

the software architectural level by test cases shall be determined. 

• Each functional and technical safety requirement shall be verified (by 

test, if applicable) at least once in the complete integration subphase. 

Similar requirements in DOD2167A, IEC 61508 etc.

Classification-Tree Method 

• All-purpose test method for specification-based test case design

– Independent of test phase (from unit to system testing)

– Independent of application domain (technical systems as well as IT 
systems)

– Independent of certain test objects

• Comprehensive and easily understandable test documentation

• Good abstraction

• Systematic procedure,
proven in use

• Clear graphical representation
of test complexity and amount

• Widely used

• Recommended by standards
like ISTQB Certified Tester

• Tool support (CTE XL, CTE XL Prof.)



8

Input domain

SUT: computer vision system determining the distance 
to proceeding vehicle

dangerous

1

2

3

features

distance

largesmall

distance color color shape

car CVcircle

shape

kind

Classification-Tree Method 

Classification-Tree Method

Additional Aspects

• Vehicle speed of system vehicle

• Relative speed between target vehicle and system vehicle

• Weather conditions: clear, rain, snowfall

• Daytime: night, morning / evening, noon

• Lighting: Low sun angle, oncoming vehicles with high beam

• User action: braking, override, none

• …



9

SUT: computer vision system determining the distance 
to proceeding vehicle

dangerous

Input domain

1

2

3

features

distance

largesmall

distance color color shape

car CVcircle

shape

kind

Minimum number of test cases = 5
five disjoint classes for the
classification “shape”

Classification-Tree Method 

SUT: computer vision system determining the distance 
to proceeding vehicle

dangerous

Input domain

1

2

3

features

distance

largesmall

distance color color shape

car CVcircle

shape

kind

Maximum number of test cases
2 * 3 * 5 = 30

Classification-Tree Method 



10

Classification-Tree Method

Weightings for classes

Logical dependency rules

Truck ⇒ not high speed

Generation rules

– Pairwise (distance, shape)

– Prioritized Pairwise (distance, shape)

– (distance * shape) + color

Test sequences

– Sequence of test steps with timing information

– Function definitions for value changes between test steps

• Syntax-oriented, context sensitive graphical editor supporting the 

classification-tree method

• Hierarchical structuring of large classification trees and large numbers of 

test cases and test sequences

• Automatic verification of test cases against dependency rules

• Automatic test case generation according to generation rules

• Modeling of test sequences

• Interfaces for DOORS, TESSY,

QualityCenter, MESSINA, TPT etc. 

• Statistics

• Tag concept for annotation of 

information

Classification-Tree Editor CTE XL Prof.



11

DOORS

• Product of IBM Rational

• Industry standard for requirements management

• Supports requirements exchange between project partners (OEM –

Suppliers) during the requirements negotiation process

• Unique identification of requirements

• Linking of requirements

• User management

• Baselining, Histories

• often used for test

management, too

Horizontal Requirements Tracing using DOORS and 

CTE XL Prof.

Detailed

Design

Implementation

SW 

Integration

Production

Product

Integration

System 

IntegrationSystem Design

Software 

Design

Product Design

Requirements
Specification

Intentions,

Objectives

software requirements software test specifications

system requirements system test specifications

software units requirements software units test specifications



12

Target Elements for Requirements Tracing

• Elements of the classification tree

– Classifications

• Example: the distance must be controlled continuously

⇒ distance

– Classes

• Example when the distance falls below speed/2,5 

meters for more than a second, send warning ⇒ small, 

large

• Dependency rules

– Example: the system must be inactive for small speeds

below 30 km/h ⇒ speed: <30 ⇒ state: inactive

Target Elements for Requirements Tracing

• Generation rules

– Example: all preceding vehicles have to be detected
independent of the system vehicle‘s speed ⇒ speed * 
vehicle kinds

• Elements of the combination table

– Test cases

• Example speed: high, distance: small, vehicle: truck, 
color: black, …)

– Test sequences

• set of test steps

– Test steps

• Example: when the speed falls below 30 km/h for more 
than a second the system has to be deactivated, a 
corresponding info message has to be displayed ⇒
step1: speed: 50 km/h, step2: speed: <30 km/h)



13

Integration of DOORS and CTE XL Prof.

• Linking requirements to target elements of the classification tree and 

combination table

• Automatic monitoring of requirement changes

• Highlighting of target elements necessary to review

Spec. changes

Integration of DOORS and CTE XL Prof.



14

Integration of DOORS and CTE XL Prof.

Integration of DOORS and CTE XL Prof.



15

Integration of DOORS and CTE XL Prof.

Integration of DOORS and CTE XL Prof.



16

Integration of DOORS and CTE XL Prof.

Integration of DOORS and CTE XL Prof.



17

Integration of DOORS and CTE XL Prof.

Integration of DOORS and CTE XL Prof.



18

Integration of DOORS and CTE XL Prof.

Summary

• Requirements Tracing demanded in most development

standards

– Vertical tracing

– Horizontal tracing

• DOORS and CTE XL common tools for requirements

management and test case design

• Integration of DOORS and CTE XL Prof. provides a powerful

support for horizontal tracing



19

Future Work
• MERAN is a tool to extend DOORS with variant management and 

modelling capabilities (selection, parameter replacement),

� supporting consistent variant management from specification to 

test

� supporting model-based testing

• Usually, several classification trees to model the test cases for one

specification module

� Additional tooling required to show overall requirements coverage

� Alternatively, export of test specifications and linking back to 

DOORS

• Overview of requirements linking

• Use of natural language processing to differentiate changes from typo 

corrections

• Closing the gap for horizontal tracing on a semantic basis, e.g. using 

“formalized” specification catalogues

• Support of other tools, e.g. MKS


