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Requirements Tracing in Industrial Practice

Demands result from

• Standards, e.g. ISO 15504 and ISO 26262

– Verification that each requirement has been

implemented (especially for safety requirements)

– Verification that the system has been tested for

each requirement ⇒ Requirements Coverage

• Change Management

• Variant Management, Configuration Management

• Project Management
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Road Vehicles – Functional Safety (ISO 26262) 

Subset of typical demands

• To evaluate the completeness of test cases and to demonstrate that 

there is no unintended functionality, the coverage of requirements at 

the software unit level shall be determined.

• To evaluate the completeness of tests and to obtain confidence that 

there is no unintended functionality the coverage of requirements at 

the software architectural level by test cases shall be determined. 

• Each functional and technical safety requirement shall be verified (by 

test, if applicable) at least once in the complete integration subphase. 

Similar requirements in DOD2167A, IEC 61508 etc.

Classification-Tree Method 

• All-purpose test method for specification-based test case design

– Independent of test phase (from unit to system testing)

– Independent of application domain (technical systems as well as IT 
systems)

– Independent of certain test objects

• Comprehensive and easily understandable test documentation

• Good abstraction

• Systematic procedure,
proven in use

• Clear graphical representation
of test complexity and amount

• Widely used

• Recommended by standards
like ISTQB Certified Tester

• Tool support (CTE XL, CTE XL Prof.)
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Classification-Tree Method 

Classification-Tree Method

Additional Aspects

• Vehicle speed of system vehicle

• Relative speed between target vehicle and system vehicle

• Weather conditions: clear, rain, snowfall

• Daytime: night, morning / evening, noon

• Lighting: Low sun angle, oncoming vehicles with high beam

• User action: braking, override, none

• …
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Classification-Tree Method

Weightings for classes

Logical dependency rules

Truck ⇒ not high speed

Generation rules

– Pairwise (distance, shape)

– Prioritized Pairwise (distance, shape)

– (distance * shape) + color

Test sequences

– Sequence of test steps with timing information

– Function definitions for value changes between test steps

• Syntax-oriented, context sensitive graphical editor supporting the 

classification-tree method

• Hierarchical structuring of large classification trees and large numbers of 

test cases and test sequences

• Automatic verification of test cases against dependency rules

• Automatic test case generation according to generation rules

• Modeling of test sequences

• Interfaces for DOORS, TESSY,

QualityCenter, MESSINA, TPT etc. 

• Statistics

• Tag concept for annotation of 

information

Classification-Tree Editor CTE XL Prof.
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DOORS

• Product of IBM Rational

• Industry standard for requirements management

• Supports requirements exchange between project partners (OEM –

Suppliers) during the requirements negotiation process

• Unique identification of requirements

• Linking of requirements

• User management

• Baselining, Histories

• often used for test

management, too

Horizontal Requirements Tracing using DOORS and 

CTE XL Prof.
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Target Elements for Requirements Tracing

• Elements of the classification tree

– Classifications

• Example: the distance must be controlled continuously

⇒ distance

– Classes

• Example when the distance falls below speed/2,5 

meters for more than a second, send warning ⇒ small, 

large

• Dependency rules

– Example: the system must be inactive for small speeds

below 30 km/h ⇒ speed: <30 ⇒ state: inactive

Target Elements for Requirements Tracing

• Generation rules

– Example: all preceding vehicles have to be detected
independent of the system vehicle‘s speed ⇒ speed * 
vehicle kinds

• Elements of the combination table

– Test cases

• Example speed: high, distance: small, vehicle: truck, 
color: black, …)

– Test sequences

• set of test steps

– Test steps

• Example: when the speed falls below 30 km/h for more 
than a second the system has to be deactivated, a 
corresponding info message has to be displayed ⇒
step1: speed: 50 km/h, step2: speed: <30 km/h)
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Integration of DOORS and CTE XL Prof.

• Linking requirements to target elements of the classification tree and 

combination table

• Automatic monitoring of requirement changes

• Highlighting of target elements necessary to review

Spec. changes

Integration of DOORS and CTE XL Prof.
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Integration of DOORS and CTE XL Prof.

Integration of DOORS and CTE XL Prof.
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Integration of DOORS and CTE XL Prof.

Integration of DOORS and CTE XL Prof.
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Integration of DOORS and CTE XL Prof.

Integration of DOORS and CTE XL Prof.
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Integration of DOORS and CTE XL Prof.

Integration of DOORS and CTE XL Prof.
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Integration of DOORS and CTE XL Prof.

Summary

• Requirements Tracing demanded in most development

standards

– Vertical tracing

– Horizontal tracing

• DOORS and CTE XL common tools for requirements

management and test case design

• Integration of DOORS and CTE XL Prof. provides a powerful

support for horizontal tracing
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Future Work
• MERAN is a tool to extend DOORS with variant management and 

modelling capabilities (selection, parameter replacement),

� supporting consistent variant management from specification to 

test

� supporting model-based testing

• Usually, several classification trees to model the test cases for one

specification module

� Additional tooling required to show overall requirements coverage

� Alternatively, export of test specifications and linking back to 

DOORS

• Overview of requirements linking

• Use of natural language processing to differentiate changes from typo 

corrections

• Closing the gap for horizontal tracing on a semantic basis, e.g. using 

“formalized” specification catalogues

• Support of other tools, e.g. MKS


