
Automatic Validation

and Correction of

Formalized, Textual

Requirements

Jörg Holtmann, Jan Meyer, Markus von Detten

ReVVerT 2011, March 25, 2011

Introduction

Automatic Validation and Correction of Formalized, Textual Requirements - Jörg Holtmann - March 25, 2011 2

OEM 1. Customer requirements

2. System requirements

Supplier

Comfort Control Unit

Original Equipment

Manufacturer (OEM)

Supplier

Interior

Light Control

Central

Locking

Indicator

Lights

Motivation (1/3)

Automatic Validation and Correction of Formalized, Textual Requirements - Jörg Holtmann - March 25, 2011 3

• Inputs

• Outputs

• Functionality

description

System requirements specification

Rule wrt. readability [Poh10] of overall specification:

Functionality description in leaf systems!

 System consists either of subsystems or functions! [Kap07]

Manual analysis for rule violations: 

Motivation (2/3)

Automatic Validation and Correction of Formalized, Textual Requirements - Jörg Holtmann - March 25, 2011 4

• Inputs

• Outputs

• Functionality

description

System requirements specification

Manual correction of defective requirements: 

Rule wrt. readability [Poh10] of overall specification:

Functionality description in leaf systems!

 System consists either of subsystems or functions! [Kap07]

Motivation (3/3)

• Requirements validation inevitable

• Manual requirements validation techniques (e.g., reviews):

– Time-consuming

– Error-prone

– Repetitive

• Applies to manual correction of defective requirements, too

• But: unrestricted natural language (NL) informal and ambiguous

 NL requirements cannot be automatically processed

 More formal requirements representation required

Automatic Validation and Correction of Formalized, Textual Requirements - Jörg Holtmann - March 25, 2011 5

Automated validation and correction of textual requirements needed!

Solution idea (1/2)

Automatic Validation and Correction of Formalized, Textual Requirements - Jörg Holtmann - March 25, 2011 6

• Use of Controlled Natural Language (CNL)

[KK06] for system requirements specifications

– No arbitrary prose

– Requirements editor [Hol10]

• Error marking

• Auto completion

• Syntax Highlighting

– Enable automatic processing

Basis for automated requirements validation

System

requirements

(CNL)

Requirements

Engineer

Rules for high

quality speci-

fications

Solution idea (2/2)

Automatic Validation and Correction of Formalized, Textual Requirements - Jörg Holtmann - March 25, 2011 7

Parsing

Analysis

Trigger

correction

operations

Text synthesis

Rule

violations

name = “Door Locking”

:System

name = “Safety Locking”

:System

name = “Lock Door L”

:Function

name = “Lock Door R”

:Function

name = “Doors_Locked”

:BooleanSignal

subsystems
functions

functions

output outputfunctions functions

...

...

subsystems

name = “Safety

Lock Door L”

:Function

:Event :OperatorExpression

value = 250

:IntegerValue

name = “Velocity”

:IntegerSignal

activates event

Condition

value = 230

:IntegerValue

rightSideleftSide

max

relOpType = RelOpType::>

:RelationalOperator

operator

output

Processible

Model

act moveFunctionsToNewSubsystem

superordinate

System

function:Function

superordinate

System:System

tooComplexSystem

tooComplex

System

name :=

“temporarySystem

Name”

newSubsystem

:System
subSystems

<<create>>

<<create>>

functions

functions

newSubsystem
subSystems

superordinate

System

tooComplexSystem

tooComplex

System

<<destroy>>

<<destroy>>

Create temporary subsystem Move function to temporary subsystem

Remove annotation

[end]

moveFunctionsToNewSubsystem(tooComplexSystem:SystemWithSubsystemsAndFunctions):void

<<create>>

<<destroy>>

act moveFunctionsToNewSubsystem

superordinate

System

function:Function

superordinate

System:System

tooComplexSystem

tooComplex

System

name :=

“temporarySystem

Name”

newSubsystem

:System
subSystems

<<create>>

<<create>>

functions

functions

newSubsystem
subSystems

superordinate

System

tooComplexSystem

tooComplex

System

<<destroy>>

<<destroy>>

Create temporary subsystem Move function to temporary subsystem

Remove annotation

[end]

moveFunctionsToNewSubsystem(tooComplexSystem:SystemWithSubsystemsAndFunctions):void

<<create>>

<<destroy>>

act moveFunctionsToNewSubsystem

superordinate

System

function:Function

superordinate

System:System

tooComplexSystem

tooComplex

System

name :=

“temporarySystem

Name”

newSubsystem

:System
subSystems

<<create>>

<<create>>

functions

functions

newSubsystem
subSystems

superordinate

System

tooComplexSystem

tooComplex

System

<<destroy>>

<<destroy>>

Create temporary subsystem Move function to temporary subsystem

Remove annotation

[end]

moveFunctionsToNewSubsystem(tooComplexSystem:SystemWithSubsystemsAndFunctions):void

<<create>>

<<destroy>>

sp TooComplexSystem

superordinate

System:System
SIZE ≥ 1

subSystems

:System

SIZE ≥ 1

functions

:Function

subSystems

functions

:SystemWith

SubsystemsAnd

Functions

tooComplex

System
<<create>>

<<create>>

sp TooComplexSystem

superordinate

System:System
SIZE ≥ 1

subSystems

:System

SIZE ≥ 1

functions

:Function

subSystems

functions

:SystemWith

SubsystemsAnd

Functions

tooComplex

System
<<create>>

<<create>>

sp TooComplexSystem

superordinate

System:System
SIZE ≥ 1

subSystems

:System

SIZE ≥ 1

functions

:Function

subSystems

functions

:SystemWith

SubsystemsAnd

Functions

tooComplex

System
<<create>>

<<create>>
Correction

operations

name = “Door Locking”

:System

name = “Safety Locking”

:System

name = “Lock Door L”

:Function

name = “Lock Door R”

:Function

subsystems
functions

functions

output outputfunctions functions

...

subsystems
name = “temporarySystem

Name”

:System

subsystems

Corrected

Processible

Model

System

requirements

(CNL)

Requirements

Engineer

Developer

Developer Requirements

Engineer
Specification

Defective

Requirements

Parsing into processible model (1/2)

Automatic Validation and Correction of Formalized, Textual Requirements - Jörg Holtmann - March 25, 2011 8

Parsing

Analysis

Trigger

correction

operations

Text synthesis

Rule

violations

name = “Door Locking”

:System

name = “Safety Locking”

:System

name = “Lock Door L”

:Function

name = “Lock Door R”

:Function

name = “Doors_Locked”

:BooleanSignal

subsystems
functions

functions

output outputfunctions functions

...

...

subsystems

name = “Safety

Lock Door L”

:Function

:Event :OperatorExpression

value = 250

:IntegerValue

name = “Velocity”

:IntegerSignal

activates event

Condition

value = 230

:IntegerValue

rightSideleftSide

max

relOpType = RelOpType::>

:RelationalOperator

operator

output

Processible

Model

Correction

operations

Corrected

Processible

Model

System

requirements

(CNL)

Requirements

Engineer

Developer

Defective

Requirements

Developer Requirements

Engineer

Rules for high

quality speci-

fications Specification

Parsing into processible model (2/2)

Requirements formulated

according to CNL are parsed

into Abstract Syntax Graph

(ASG)

Automatic Validation and Correction of Formalized, Textual Requirements - Jörg Holtmann - March 25, 2011 Automatic Validation and Correction of Formalized, Textual Requirements - Jörg Holtmann - March 25, 2011 9

name = “Door Locking”

:System

name = “Safety Locking”

:System

name = “Lock Door L”

:Function

name = “Lock Door R”

:Function

name = “Doors_Locked”

:BooleanSignal

subsystems
functions

functions

output outputfunctions functions

...

...

subsystems

name = “Safety

Lock Door L”

:Function

:Event :OperatorExpression

value = 250

:IntegerValue

name = “Velocity”

:IntegerSignal

activates event

Condition

value = 230

:IntegerValue

rightSideleftSide

max

relOpType = RelOpType::>

:RelationalOperator

operator

output

ASG excerpt Concrete requirements

– The system “Door Locking” consists of

the following subsystem: Safety

Locking.

– The functionality of the system “Door

Locking” consists of the following

functions: Lock Door L, Lock Door R.

Requirements Validation (1/3)

Automatic Validation and Correction of Formalized, Textual Requirements - Jörg Holtmann - March 25, 2011 10

Parsing

Analysis

Trigger

correction

operations

Text synthesis

Rule

violations

name = “Door Locking”

:System

name = “Safety Locking”

:System

name = “Lock Door L”

:Function

name = “Lock Door R”

:Function

name = “Doors_Locked”

:BooleanSignal

subsystems
functions

functions

output outputfunctions functions

...

...

subsystems

name = “Safety

Lock Door L”

:Function

:Event :OperatorExpression

value = 250

:IntegerValue

name = “Velocity”

:IntegerSignal

activates event

Condition

value = 230

:IntegerValue

rightSideleftSide

max

relOpType = RelOpType::>

:RelationalOperator

operator

output

Processible

Model

sp TooComplexSystem

superordinate

System:System
SIZE ≥ 1

subSystems

:System

SIZE ≥ 1

functions

:Function

subSystems

functions

:SystemWith

SubsystemsAnd

Functions

tooComplex

System
<<create>>

<<create>>

sp TooComplexSystem

superordinate

System:System
SIZE ≥ 1

subSystems

:System

SIZE ≥ 1

functions

:Function

subSystems

functions

:SystemWith

SubsystemsAnd

Functions

tooComplex

System
<<create>>

<<create>>

sp TooComplexSystem

superordinate

System:System
SIZE ≥ 1

subSystems

:System

SIZE ≥ 1

functions

:Function

subSystems

functions

:SystemWith

SubsystemsAnd

Functions

tooComplex

System
<<create>>

<<create>>
Correction

operations

Corrected

Processible

Model

System

requirements

(CNL)

Requirements

Engineer

Developer

Defective

Requirements

Developer Requirements

Engineer

Rules for high

quality speci-

fications Specification

Requirements Validation (2/3)

• Rule: Functions should only

appear in leaf systems

• Systems can consist of

subsystems and functions

• Functions are “atomic” (do not

consist of further elements)

Rule satisfied, if systems consist

either of subsystems or of

functions

Rule violation: System consists of

subsystems as well as functions

Automatic Validation and Correction of Formalized, Textual Requirements - Jörg Holtmann - March 25, 2011 11

Requirements Validation (3/3)

• Graph transformation (GT) pattern for rule violation:

system consists of subsystems as well as functions

• If matched: annotation node is created

– Tagging as defective requirement

– Information which rule is violated

Automatic Validation and Correction of Formalized, Textual Requirements - Jörg Holtmann - March 25, 2011 12

 GT pattern „TooComplexSystem“

name = “Door Locking”

:System

name = “Safety Locking”

:System

name = “Lock Door L”

:Function

name = “Lock Door R”

:Function

name = “Doors_Locked”

:BooleanSignal

subsystems
functions

functions

output outputfunctions functions

...

...

subsystems

name = “Safety

Lock Door L”

:Function

:Event :OperatorExpression

value = 250

:IntegerValue

name = “Velocity”

:IntegerSignal

activates event

Condition

value = 230

:IntegerValue

rightSideleftSide

max

relOpType = RelOpType::>

:RelationalOperator

operator

output

ASG excerpt

superordinate

System:System
SIZE ≥ 1

subSystems

:System

SIZE ≥ 1

functions

:Function

subSystems

functions

:SystemWith

SubsystemsAnd

Functions

tooComplex

System

sp TooComplexSystem

<<create>>

<<create>>

:SystemWith

SubsystemsAnd

Functions

tooComplex

System

Correction operations (1/3)

Automatic Validation and Correction of Formalized, Textual Requirements - Jörg Holtmann - March 25, 2011 13

Parsing

Analysis

Trigger

correction

operations

Text synthesis

Rule

violations

Processible

Model

act moveFunctionsToNewSubsystem

superordinate

System

function:Function

superordinate

System:System

tooComplexSystem

tooComplex

System

name :=

“temporarySystem

Name”

newSubsystem

:System
subSystems

<<create>>

<<create>>

functions

functions

newSubsystem
subSystems

superordinate

System

tooComplexSystem

tooComplex

System

<<destroy>>

<<destroy>>

Create temporary subsystem Move function to temporary subsystem

Remove annotation

[end]

moveFunctionsToNewSubsystem(tooComplexSystem:SystemWithSubsystemsAndFunctions):void

<<create>>

<<destroy>>

act moveFunctionsToNewSubsystem

superordinate

System

function:Function

superordinate

System:System

tooComplexSystem

tooComplex

System

name :=

“temporarySystem

Name”

newSubsystem

:System
subSystems

<<create>>

<<create>>

functions

functions

newSubsystem
subSystems

superordinate

System

tooComplexSystem

tooComplex

System

<<destroy>>

<<destroy>>

Create temporary subsystem Move function to temporary subsystem

Remove annotation

[end]

moveFunctionsToNewSubsystem(tooComplexSystem:SystemWithSubsystemsAndFunctions):void

<<create>>

<<destroy>>

act moveFunctionsToNewSubsystem

superordinate

System

function:Function

superordinate

System:System

tooComplexSystem

tooComplex

System

name :=

“temporarySystem

Name”

newSubsystem

:System
subSystems

<<create>>

<<create>>

functions

functions

newSubsystem
subSystems

superordinate

System

tooComplexSystem

tooComplex

System

<<destroy>>

<<destroy>>

Create temporary subsystem Move function to temporary subsystem

Remove annotation

[end]

moveFunctionsToNewSubsystem(tooComplexSystem:SystemWithSubsystemsAndFunctions):void

<<create>>

<<destroy>>

Correction

operations

name = “Door Locking”

:System

name = “Safety Locking”

:System

name = “Lock Door L”

:Function

name = “Lock Door R”

:Function

subsystems
functions

functions

output outputfunctions functions

...

subsystems
name = “temporarySystem

Name”

:System

subsystems

Corrected

Processible

Model

System

requirements

(CNL)

Requirements

Engineer

Developer

Defective

Requirements

Developer Requirements

Engineer

Developer

Rules for high

quality speci-

fications Specification

Correction operations (2/2)

• Strategies to resolve rule violation

– Move subsystems one level higher

– Move functions to new subsystem

Automatic Validation and Correction of Formalized, Textual Requirements - Jörg Holtmann - March 25, 2011 14

Developer

Rules for high

quality speci-

fications Specification

Textual requirements synthesis

Automatic Validation and Correction of Formalized, Textual Requirements - Jörg Holtmann - March 25, 2011 15

Parsing

Analysis

Trigger

correction

operations

Text synthesis

Rule

violations

Processible

Model

Correction

operations

name = “Door Locking”

:System

name = “Safety Locking”

:System

name = “Lock Door L”

:Function

name = “Lock Door R”

:Function

subsystems
functions

functions

output outputfunctions functions

...

subsystems
name = “temporarySystem

Name”

:System

subsystems

Corrected

Processible

Model

System

requirements

(CNL)

Requirements

Engineer

Developer

Defective

Requirements

Developer Requirements

Engineer

Rules for high quality specifications

• Refer to overall structure of described function

hierarchy

• Stem from experiences using the CNL

• Further examples

– (De-)Activation events/conditions wrt. signals have

to be within signal range  consistency

– Functions/subsystems must only use signals

provided by superordinate system  completeness,

consistency

– Empty systems  completeness

– Functions without inputs/outputs  completeness

– Specified signals have to be referenced 

completeness

– Not used system signals  completeness

– Overlapping (de-)activation events for the same

function  consistency

Automatic Validation and Correction of Formalized, Textual Requirements - Jörg Holtmann - March 25, 2011 16

Limitations and benefits

• Limitations

– No assurance of semantically complete specifications

– Not every inconsistency can be found

• Benefits

– Several rules for high quality specifications

– For each rule: one rule violating pattern

– If possible: one or several alternative correction operations

Rule violation found: hint that something is wrong

If no rule is violated, the specification is on a good way

Automatic Validation and Correction of Formalized, Textual Requirements - Jörg Holtmann - March 25, 2011 17

Conclusion and Outlook

• Conclusion

– Controlled Natural Language (CNL)

• No arbitrary prose  constructive defect avoidance

• Enable automatic processing of textual requirements

– Automated requirements validation

• Rules for high quality specifications

• Graph transformation patterns for detection of rule violating

requirements

– Further guidance by automatic correction operations for defective

requirements (also based on graph transformations)

• Outlook

– Tool support and evaluation

– Transition to model-based design

– Transfer of the general concept to other domains

– Transition to testing

Automatic Validation and Correction of Formalized, Textual Requirements - Jörg Holtmann - March 25, 2011 18

Publications

[FNTZ00] T. Fischer, J. Niere, L. Torunski, and A. Zündorf: Story Diagrams: A new Graph

 Rewrite Language based on the Unified Modeling Language. In Theory

 and Application of Graph Transformations, Lecture Notes in Computer Science

 (LNCS) 1764, pp. 157–167, 2000

[Hol10] J. Holtmann: Mit Satzmustern von textuellen Anforderungen zu Modellen. In

 OBJEKTspektrum, no. RE/2010 (Online Themenspecial Requirements

 Engineering). SIGS DATACOM, 2010

[Kap07] R. Kapeller: Einsatz einer Basisontologie für das Reverse Software

 Engineering im Rahmen des Anforderungsmanagements für Produktlinien.

 In FG SRE: Bericht und Beiträge vom Workshop Software-Reengineering (WSR

 2007), 2007

[KK06] R. Kapeller and S. Krause: So natürlich wie Sprechen – Embedded Systeme

 modellieren. In Design & Elektronik, no. 8, 2006.

[Poh10] K. Pohl: Requirements Engineering. Fundamentals, Principles, and

 Techniques. Springer, 2010

[vDMT10] M. von Detten, M. Meyer, and D. Travkin: Reverse Engineering with the

 Reclipse Tool Suite. In Proc. of the 32nd ACM/IEEE International Conference on

 Software Engineering (ICSE 2010), 2010

Automatic Validation and Correction of Formalized, Textual Requirements - Jörg Holtmann - March 25, 2011 19

s-lab – Software Quality Lab

University of Paderborn

Warburger Str. 100

33098 Paderborn

Tel.: (05251) 60 5390 / 5391

http://s-lab.upb.de

info@s-lab.upb.de

Thanks for

your attention.

Automatic Validation and Correction of Formalized, Textual Requirements - Jörg Holtmann - March 25, 2011 20

