
06/04/2010

A preliminary study
on BPEL process testability

Sébastien

Salva, Issam

Rabhi

1

2

Outline

•

Introduction
•

Testability

•

ABPEL to STS?
•

Testability Issues

•

Testability Propositions & Enhancement
•

Conclusion & Perspectives

Presenter
Presentation Notes

3

Introduction

•

Web Services: independent object instances
called by operations

•

BPEL: an OASIS standard language used for
describing interactions in Service Oriented
Architectures (SOA)

Presenter
Presentation Notes
Web services fall under the so-called emerging technologies

category and are getting more and more used for developing business applications.

4

Introduction

Presenter
Presentation Notes

BPEL processes are usually overlapped in large Business

applications composed of web services and such applications

are more and more developed with respect of quality processes.

Testability,

(Pour réaliser l’implémentation Sous Test)

Pour assurer la testabilité

Et Comme le code et les interactions externes sont connus

Donc on considère l’architecture de test en boite grise.

Avec les boîtes grise, deux types d’architectures sont proposés.

Et ces architectures diffèrent par le nombre de PCO (point de contrôle et d’observation).

•

Testability gathers several criteria which
evaluate the system capacity
▫

To reveal its faults

▫

the accessibility of its components
▫

its testing cost

•

Testability

can

be

used

to model

and

to
implement

testable systems

5

Testability

Presenter
Presentation Notes
Since, the testing process costs as much as 50 % of the total development effort,

testability is seen as essential.

Testability

in software life

cycle

6

Testability

Presenter
Presentation Notes

Testability can be blend into software

life cycle as illustrated in this Figure.

Designers evaluate testability

of a system after each life cycle step. So, they can evaluate

and anticipate the system parts which are testable and those

which are not. They can also measure the testing cost.

•

Observability
▫

”a system is observable if for each input given to
the system, a different output is observed”

•

Controlability
▫

”a system

is

controllable

if for each

observed

 output, it

exists

an input which

forces the
 observation of

this

output”.

7

Testability

Presenter
Presentation Notes
Since, the testing process costs as much as 50 % of the total development effort,

testability is seen as essential.

We focus on two well known testability criteria,

 observability and controllability.

 Observability aims to evaluate the system internal state

according to its observed outputs. For input output systems,

observability is defined by: ”a system is

observable if for each input given to the system, a

different output is observed”,

 Controllability denotes the ability to reach and to activate

specific parts of a system. It is defined by ”a system

is controllable if for each observed output, it exists an

input which forces the observation of this output”.

8

Testability

Architecture 1

Presenter
Presentation Notes
In the following, we consider gray box BPEL processes

were the external interactions with the partners are observable.

With such gray boxes, two kinds of test architectures are

proposed. These ones differ by the number of PCO (pointof control and observation). In the first one (Figure 3 with

continuous boxes), there is only one PCO, thus the web service

interactions are uncontrollable. We can only stimulate the

BPEL process from the client application. With the second

architecture (Figure 3 with dashed boxes), more PCO are

added to control the messages sent from the partners, which

need to be simulated. Each message sent to the BPEL process

is then controllable. Nevertheless, simulating partners may be

difficult and always increases the testing cost. Some testing

methods use this architecture and some tools help to implement

simulated partners by generating automatically partner

stubs [2].

Fig. 3.

9

Testability

Architecture 2

Presenter
Presentation Notes
La deuxième architecture est la suivante :

Avec cette architecture nous ajoutant de simples PCO et en simulant les services web.

Ainsi le problèmes d’incotralabilités des pateners est résolu,

 �Malgré que la simulation peut être difficile et augmente toujours le coût de test.

10

ABPEL to STS ?

•

To flatten

the

nested

BPEL activities

•

To spread

fault

handlers

into

sub-activities

•

To retrieve

irrelevant

properties

•

STS offers

a large formal

background
▫

definitions

of

implementation

relations

▫

test case generation

algorithms

Presenter
Presentation Notes

To evaluate testability criteria, we propose to transform ABPEL specifications into STS

and to apply existing methods. Then, from STS testability issues,

we deduce some patterns of ABPEL testability degradation

To flatten the nested BPEL activities: such as scop activity

To retrieve irrelevant properties: such as the empty activity

11

ABPEL Example

Presenter
Presentation Notes
the APBEL (Abstract BPEL) language

Many high level languages, such as BPMN, ABPEL (Abstract

BPEL) or UML activity diagrams are used to describe the

BPEL process overall behaviors

by giving for instance the partner roles, the exchanged messages (requests and

responses), and the conditions on these messages,

In this process called LOAN, a customer sends a request

for a loan. The request is processed differently according of

the amount (amount ¡=1000 or ¿=1000) and the customer finds

out whether the loan was approved. The partner involved is

a ”BankService” which is called by the operations ”Invokeassessor”,

”Invokeapproval1” and ”Invokeapproval2”.

12

STS Example

Presenter
Presentation Notes
Soit l’exemple suivant c’est le diagramme UML SMD , il présente l’exemple intilae du loan Approval avnat l’amélioration de la testabilité

Donc on remarque içi que pour l’entré ?amount on peut avoir deux sortie différente causé dans le cas de amount =1000 donc il s’agit d’un problème de controlabilité. Pareil et a

•

Observability

issues:

▫

(?amount, amount

=1000) and

(?risk, risk

= high;
amount = 1000) give the same reaction

 (!request1, amount

= 1000)

▫

(?risk, risk

= low) and

(?approval2, app2 = yes)
are followed

by the

same

reaction

(!approval,app2

= yes)

13

Testability issues

Presenter
Presentation Notes

 Observability issues: The stimuli (?amount, amount =

1000) and (?risk, risk = high; amount = 1000) give

the same reaction (!request1, amount = 1000). In

the same way (?risk, risk = low) and (?approval2,

app2 = yes) are followed by the same reaction

(!approval,app2 = yes). The last observability issues

are detected at the location A11 (Invoke Assessor), where

several input messages modeling ”catch” activities are not

followed by output ones,

•

Controlability

issues:

▫

A3 (invoke

assessor), A4 (B.Invoke

approval1),
A6 (B. Invoke

Approval2), A9(B. Reply

Customer)

on account

of

partner

roles

not

initialized

▫

A15: two

conditions [amount

>= 1000] and
 [amount

<= 1000] are not

exclusive.

14

Testability issues

Presenter
Presentation Notes
 Controllability issues:

The STS of Figure 5 has four indeterminism locations (locations A3 (invoke

assessor), A4 (B.Invoke approval1), A6 (B. Invoke Approval2),

A9(B. Reply Customer)) on account of partner

roles not initialized in the APBEL specification. Another

controllability issue is detected from the location

A15 since the two conditions [amount 1000] and

[amount 1000] are not exclusive. The last case is

obtained from the location A11 where the same fault

?FaultId1 is labelled on two different transitions.

These evaluations detect only issues in the corresponding STS

specification.

So, these ones do not help designers neither to

write ABPEL processes with higher quality nor to improve

them once testability issues are detected.

This is why we analyze some properties degrading the STS testability from which we deduce the

corresponding properties degrading the ABPEL testability.

We suggest some propositions describing ABPEL patterns which

degrade observability and controllability and which must not

be reproduced.

•

Observability

propositions:

▫

An ABPEL specification not terminated by a
”reply”

(one-way ”invoke”) activity is not

observable

▫

An ABPEL specification composed of a couple of
non identical ”catch”

(”catchall”) activities

,

followed by two ”invoke”

activities using the same
operation and parameter values, is not observable

15

Propositions

Presenter
Presentation Notes
We suggest some propositions describing ABPEL patterns which

degrade observability and controllability and which must not

be reproduced.

An ABPEL specification not terminated by

a ”reply” (one-way ”invoke”) activity is not observable.

•

Controlability

propositions:

▫

”invoke”

activities, depending on partners whose
the role is not initialized, involve to uncontrollable
ABPEL processes

▫

An ABPEL process, composed of a ”faulthandler”
activity gathering two identical ”catch”

activities,

is not controllable.

16

Propositions

Presenter
Presentation Notes
On passe aux

Voici une liste des propositions qu’on a suggéré pour rendre le processus BPEL plus testable.

Donc on commence avec l’observabilité:

1)Ça veux dire si un fault handler est déclanché par deux faults différent , il faut pas qu’il rendre la même sortie.

2)Il est déconseillé utiliser l’activité catchall

3) Il faut pas que le process sera composé d’une seccession des activités invoke-only: dans le mode asynchrone o peyt pas associé les entrés aux sorties

17

Testability Enhancement

•

Testability Enhancement Tool :

Presenter
Presentation Notes
Note that we denote

these enhancement methods as semi-automatic.

Because

The modification of ABPEL specifications by these enhancement

methods may require the update of some partner

WSDL descriptions or code parts.

18

Testability Enhancement

•

Observability

Enhancement:

▫

”reply”

activity addiction:

Presenter
Presentation Notes
We check that each branch of the ABPEL specification ends with a ”reply” (invoke only) activity.

19

Testability Enhancement

•

Controlability

Enhancement :
▫

partner role addiction:

Presenter
Presentation Notes
For each ”invoke” activity: invoke (mess; resp; partner; op), we check that the partner role is described in the ”PartnerLink”. If not, we update it, in condition that all the partner

20

Testability Enhancement

•

Controlability

Enhancement :
▫

fault distinction in fault handlers:

Presenter
Presentation Notes
We check that each ”faulthandler” is not composed of two ”catch” activities catchi(?fault; acti), catchj(?fault; actj) triggered by the same fault. Otherwise, we try to differentiate these faults, by modifying the message type or by naming them differently.

21

The modified STS

Presenter
Presentation Notes
This figure shows the new specification is much more testable since the testability degradation

number is reduced to 4 instead of 11

Three different ”reply” activities (locations A12, A13 and A14) and three partner roles (locations A3, A6 and A9) have been added.

Two identical ”catch” activities (location A11) have been distinguished.

22

Conclusion &

Perspectives

•

We

suggest

some

propositions to:

▫

directly

write

more testable ABPEL specifications
▫

evaluate

observability

and controllability

criteria.

•

We

also

propose some

testability

enhancement
 methods, which

have been implemented

in an

academic

tool.

Presenter
Presentation Notes
other criteria can be studied such as:

 the execution time, which evaluates the testing cost according

to the minimal and maximal execution times.

the completeness, which gathers the completeness of the

states on the input message set, the completeness of the

condition guards in a ”if” activity or the completeness of

the received messages (especially the received faults). Incomplete

processes may lead to deadlocks.

the accessibility of BPEL parts, especially when we

consider BPEL concurrent processes. ”flow” activities

may use shared variables and may provoke incoherent

behaviours or deadlocks which do not allow to reach and

to test specific parts

23

Conclusion &

Perspectives

•

The execution

time

•

The completeness

•

The accessibility

of BPEL parts

Presenter
Presentation Notes
other criteria can be studied such as:

 the execution time, which evaluates the testing cost according

to the minimal and maximal execution times.

the completeness, which gathers the completeness of the

states on the input message set, the completeness of the

condition guards

the accessibility of BPEL parts, especially when we

consider BPEL concurrent processes. ”flow” activities

may use shared variables and may provoke incoherent

behaviours or deadlocks which do not allow to reach and

to test specific parts

	A preliminary study �on BPEL process testability
	Outline
	Introduction
	Introduction
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Testability
	Testability
	ABPEL to STS ?
	ABPEL Example
	STS Example
	Slide Number 13
	Slide Number 14
	Propositions
	Propositions
	Testability Enhancement
	Testability Enhancement
	Testability Enhancement
	Testability Enhancement
	The modified STS
	Conclusion & Perspectives
	Conclusion & Perspectives

