DERIVING EXHAUSTIVE TEST SUITES FOR NONDETERMINISTIC FSMs W.R.T. NON-SEPARABILITY RELATION

> Ekaterina Akenshina, Natalia Shabaldina, Nina Yevtushenko

Tomsk State University, 36 Lenin str., Tomsk, 634050, Russia

- Introduction
- Relations between NFSMs and 'all weather conditions' assumption
- Separating two NFSMs
- Test suite derivation w.r.t. a mutation machine
- Test suite derivation w.r.t. "black box"
- Future work

WHY NONDETERMINISTIC?

- FSMs serve as an underlying model for SDL specifications as well as for UML state charts and those FSMs are nondeterministic
- PROMELA that is used in the model checker SPIN also allows a nondeterministic behavior
- software mutation testing

Nondeterministic descriptions usually are more compact than the corresponding deterministic models

FINITE STATE MACHINE $S = \langle S, I, O, h_S, s_1 \rangle$

- S set of states I – input alphabet
- **O** output alphabet
- $h_{\rm S}$ behavior relation,
 - $h_{s} \subseteq S \times I \times O \times S$
- S_1 the initial state

 $out_{S}(s, \alpha) = \{ \beta \mid \exists s \in S (s, \alpha, \beta, s) \in h_{S} \}$

RELATIONS BETWEEN NFSMs

- FSMs T and S are equivalent if ∀α∈ /* (out_T(t₁, α) = out_S(s₁, α))
 FSM T is a reduction of S if ∀α∈ /* (out_T(t₁, α) ⊆ out_S(s₁, α))
 FSMs T and S are non-separable if ∀α∈ /* (out_T(t₁, α) ∩ out_S(s₁, α) ≠ Ø)
- FSMs T and S are r-compatible if T and S have a common reduction

separability ⇒ non-reduction ⇒ *r*-distingushability ⇒ non-equivalence

An implementation FSM *Imp* is *conforming* if *Imp* ~ *S* The objective of MBT testing – to detect each nonconforming $Imp \in FD$

'ALL WEATHER CONDITIONS' ASSUMPTION

- + there exist test suite derivation methods
 - sometimes this assumption is not realistic
- each test case is applied several times

- + realistic
- + each test case is
- applied only once
- existing test
 derivation methods
 do not guarantee the
 fault coverage

DETECTING NONCONFORMING IUT WHEN 'ALL WEATHER CONDITIONS' ASSUMPTION DOES NOT HOLD

Preset tests (experiments)

Guarantee to detect an implementation that is separable with the specification

 Adaptive tests (experiments)
 Guarantee to detect an implementation that is *r*-distinguishable with the specification

NON-SEPARABILITY RELATION

Complete FSMs *T* and *S* are *non-separable* if for each input sequence α [$out_T(t_0, \alpha) = out_S(s_0, \alpha)$]

If there exists an input sequence α [$out_T(t_0, \alpha) \neq out_S(s_0, \alpha)$], then FSMs *T* and *S* are *separable*

 α - a *separating* sequence of FSMs *T* and *S*

TESTING W.R.T. THE NON-SEPARABILITY RELATION

• Fault model $< S_1 \sim , FD >$ where

- *S* the specification FSM
- ~ the non-separability relation
- *FD* the fault domain

All FSMs are complete

EXHAUSTIVE AND SOUND TESTS

- A *test suite* a finite set of finite input sequences
- A test suite is *exhaustive* w.r.t. < S, ~, FD> if the test detects each Imp ∈ FD that is separable with S
- A test suite is *sound* w.r.t. < S, ~, FD> if each Imp ∈ FD that is non-separable with S passes the test suite
- A test suite is *complete* w.r.t. < S, ~, FD> if the test suite is sound and complete

We derive an exhaustive test suite

FAULT MODELS

Fault models

and

have finite fault domains

A test suite can be derived by explicit enumeration

 \bigcup

INTERSECTION OF FSMs

Intersection $S \cap T$ is the largest connected submachine of the FSM $\langle S \times T, I, O, h, s_1 t_1 \rangle$ where $(st, i, o, s't') \in h$ \Leftrightarrow $(s, i, o, s') \in h_S \& (t, i, o, t') \in h_T$

DERIVING A SEPARATING SEQUENCE OF TWO FSMs (1)

Input: Complete FSMs S and T
Output: A shortest separating sequence of FSMs S and T (if it exists)

Step 1. Derive the intersection $S \cap T$ If the intersection is complete then the FSMs *S* and *T* are non-separable

DERIVING A SEPARATING SEQUENCE OF TWO FSMs (2)

Successor tree of $S \cap T$ **Step 2.** Derive a truncated successor tree of the *successor*

intersection $S \cap T$

TERMINATION RULES FOR A NODE WITH LABEL P

Termination rule 1

There exists an input *i*s.t. for each state of the set *P* the transition under *i* is undefined in the intersection $S \cap T$

successfully separated

Termination rule 2

There exists a node at a *j*th level, j < k, labeled with subset $R \subseteq P$

a shortest separating sequence cannot be derived using this path

DERIVING A SEPARATING SEQUENCE OF TWO FSMs (3)

Let there be a path labeled with α to a leaf node labeled with the subset *P* where a transition under *i* is undefined for each state of *P*

Then *αi* is a shortest separating sequence of *S* and *T*

UPPER BOUND ON SEPARATING SEQUENCE LENGTH

Given FSMs S with n states
 and T with m states,
 the length of a shortest separating
 sequence is at most 2^{nm-1}

- The upper bound is reachable
 but possibly only for exponential number of inputs
- Never experimentally reached the upper bound

DERIVING A COMPLETE TEST SUITE W.R.T. $< S_{1} \sim S_{1} Sub_{nd}(MM) > (1)$

Input: FSMs *S* and *MM* **Output:** A complete test suite *TS* w.r.t. <*S*, ~, *Sub_{nd}(MM)*>

Step 1. Derive the intersection $S \cap MM$

DERIVING A COMPLETE TEST SUITE W.R.T. $< S_{1} \sim S_{1} Sub_{nd}(MM) > (2)$

Step 2. Derive a Successor tree of $S \cap MM$ truncated successor tree of the intersection $S \cap MM$

There is an outgoing edge from a non-leaf node labeled with *i* to the nodes labeled with each non-empty subset of the *i*successor of the subset *P*

TERMINATION RULES FOR THE NODE WITH LABEL P

Termination rule 1

There exists an input *i* s.t. for each state of the set *P* the transition under *i* is undefined in the intersection $S \cap T$

Termination rule 2

There exists a node of this path labeled with subset $R \subseteq P$

Termination rule 3

 $P \supseteq \{(s, t)\}$ and the already derived part of the tree has a node labeled with $\{(s, t)\}$

and

an input sequence α that labels the path from the root to this node does not label any other path in the tree

DERIVING A COMPLETE TEST SUITE W.R.T. $< S_{1} \sim S_{1} Sub_{nd}(MM) > (3)$

- For each path terminated using Rule 1, include into *TS* an input sequence which labels the path appended with an input *i*s.t. a transition from each state of *P* under *i* is undefined in the intersection $S \cap MM$
- For each path of the tree terminated using Rule 2 or Rule 3, include into *TS* the longest prefix of an input sequence that labels the path, with the following property:

For the tail input *i* that labels the edge from the node labeled with the set *P*, there exists state $(s, m) \in P$ such that $out_{S \cap MM}((s, m), i) \subset out_{MM}(m, i)$

S	а	b	С	ММ	1	2	3
x	c/1	<i>c</i> /0	<i>b</i> /0	x	3/1	3/0	2/0
y	<i>b</i> /0	<i>a</i> /0; <i>c</i> /1	<i>c</i> /1	у	2/0	1/0; 3/1	3/1; 1/0

FSMs $\boldsymbol{\mathcal{S}} and \, \boldsymbol{\mathcal{M}} \boldsymbol{\mathcal{M}}$

$S \cap M$ M	<i>a</i> 1	<i>c</i> 3	<i>b</i> 2
x	<i>c</i> 3/1	<i>b</i> 2/0	<i>c</i> 3/0
у	<i>b</i> 2/0	<i>c</i> 3/1	a1/0; c3/1

 $\mathsf{FSM} \ \mathsf{S} \cap \mathsf{M} \mathsf{M}$

Tree of the previous exhaustive test

xy also is an exhaustive test suite w.r.t. *MM*

DERIVING A COMPLETE TEST SUITE w.r.t. $< S_{i} \sim , \Re_{m} >$

Theorem. Given the specification FSM *S* with *n* states a test suite which contains each input sequence of length 2^{mn-1} is complete w.r.t. $< S_i \sim_i \Re_m >$

STATE COUNTING ALGORITHM (1)

Main ideas:

- to derive a truncated tree of S
- to terminate a path when we are sure that for each FSM *T* with *m* states the input sequence that labels the path traverses two equal subsets of the intersection $S \cap T$

STATE COUNTING ALGORITHM (2)

A current node labeled with the subset *P* of states of *S* is claimed as a leaf node if the path from the root to this node has $2^{|P| \cdot m}$ nodes labeled with subsets of *P*

MODIFICATION

The node *Current* at *k*th level labeled with subset *P* is a leaf if:

- 1. A subset $K \subseteq P$ can be represented as the union of subsets P_i
- 2. For each P_j the prefix of the path to the node at the *I*th level, l < k, has $(2^{|P_j| \cdot m} 1)$ nodes labeled with the set P_j
- 3. The suffix of the path from the node at the *I*th level to the node *Current* has $(2^{(|P|-|K|)\cdot m})$ nodes labeled with subsets of the set *P*

EXAMPLE (1)

P = {1,2,3,4,5}, *M* = {a, b}
 The number of different nonempty sets of the *P*×*M* = 2¹⁰ - 1

•
$$K = \{1, 2\} \cup \{3, 4\}$$

- The number of different nonempty subsets of $\{1,2\} \times M = 2^4 - 1 = 15$
- The only sets which do not include non-empty subsets of {1,2} ×M and {3,4} ×M are subsets of {5} ×M

```
non-empty subsets of \{1,2\} \times M

...

\downarrow

non-empty subsets of \{1,2\} \times M

(/^{h} \text{ level})

\downarrow

non-empty subsets of \{5\} \times M

(/^{th} \text{ level}, k > /)
```


EXPERIMENTAL RESULTS

- On average, tests w.r.t. a mutation machine MM using modified algorithm are twice shorter and this gain increases when MM is more deterministic
- On average, tests w.r.t. a "black box" are 1.5 times shorter

More rigorous analysis is needed to shorten tests w.r.t. a "black box"

FUTURE WORK

- Both algorithms do not return a shortest test suite w.r.t. < S, ~, Sub_{nd}(MM) > and w.r.t. < S, ~, R_m>
- Adaptive tests using the *r*distinguishability relation could be shorter
- More rigorous experimental results could be interesting

Thanks for your attention!