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OUTLINE

Introduction
Relations between NFSMs and ‘all 
weather conditions’ assumption
Separating two NFSMs
Test suite derivation w.r.t. a mutation 
machine
Test suite derivation w.r.t. “black box”
Future work
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WHY NONDETERMINISTIC?

FSMs serve as an underlying model for SDL 
specifications as well as for UML state charts and 
those FSMs are nondeterministic

PROMELA that is used in the model checker SPIN 
also allows a nondeterministic behavior

software mutation testing

Nondeterministic descriptions usually are more compact 
than the corresponding deterministic models 
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S – set of states
I – input alphabet
O – output alphabet
hS – behavior relation,

hS ⊆  
S ×

 
I ×

 
O ×

 
S

s1 – the initial state

i1 / o2

s1 s2

i1 / o1

s3

i2 / o2i1 / o1

FINITE STATE MACHINE 
S = <S, I, O, hS , s1 >

outS (s, α) = { β | ∃
 

s´ ∈
 

S  (s, α, β , s´ ) ∈
 

hS }
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RELATIONS BETWEEN 
NFSMs

FSMs T and S are equivalent if
∀α∈I*(outT (t1 ,α) = outS (s1 ,α))

FSM T is a reduction of S if
∀α∈I*(outT (t1 ,α) ⊆ outS (s1 ,α))

FSMs T and S are non-separable if
∀α∈I*(outT (t1 ,α) ∩ outS (s1 ,α) ≠

 
∅)

FSMs T and S are r-compatible if T and S have 
a common reduction

separability
 

⇨
 

non-reduction ⇨
 

r-distingushability
 

⇨
 

non-
 equivalence
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TRADITIONAL FAULT MODEL

< S, ∼, FD >

specification

conformance
relation

fault domain

An implementation FSM Imp is conforming if Imp ∼
 

S
The objective of MBT testing – to detect each 

nonconforming Imp ∈
 

FD
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‘ALL WEATHER CONDITIONS’ 
ASSUMPTION

+ realistic
+ each test case is 
applied only once
- existing test 
derivation methods 
do not guarantee the 
fault coverage

+ there exist test suite 
derivation methods
- sometimes this 
assumption is not 
realistic
- each test case is 
applied several times

holds does not hold
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DETECTING NONCONFORMING IUT 
WHEN ‘ALL WEATHER CONDITIONS’ 
ASSUMPTION DOES NOT HOLD

Preset tests (experiments)
Guarantee to detect an implementation that 

is separable with the specification

Adaptive tests (experiments)
Guarantee to detect an implementation that 

is r-distinguishable with the specification 
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NON-SEPARABILITY 
RELATION
Complete FSMs T and S are non-separable
if for each input sequence α

[outT (t0 , α) = outS (s0 , α)]

If there exists an input sequence α
[outT (t0 , α) ≠

 
outS (s0 , α)], 

then FSMs T and S are separable

α - a separating sequence of FSMs T and S
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TESTING W.R.T. THE NON- 
SEPARABILITY RELATION

Fault model <S, ~, FD> where 

S - the specification FSM
~ - the non-separability relation
FD – the fault domain

All FSMs are complete
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EXHAUSTIVE AND SOUND 
TESTS

A test suite - a finite set of finite input sequences

A test suite is exhaustive w.r.t. <S, ~, FD> if the test 
detects each Imp ∈ FD that is separable with S

A test suite is sound w.r.t. <S, ~, FD> if each Imp ∈
FD that is non-separable with S passes the test suite 

A test suite is complete w.r.t. <S, ~, FD> if the test 
suite is sound and complete

We derive an exhaustive test suite
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FAULT MODELS
Fault models 
<S, ∼, Subnd (MM)>
and 
<S, ∼, ℜm >
have finite fault domains

⇓
A test suite can be derived by explicit 

enumeration
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INTERSECTION OF FSMs

Intersection S ∩
 

T is the largest 
connected submachine of the FSM 
<S ×T, I, O, h, s1 t1 > where

(st, i, o, s′t′) ∈
 

h
⇔

(s, i, o, s′) ∈
 

hS & (t, i, o, t′)∈hT
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DERIVING A SEPARATING 
SEQUENCE OF TWO FSMs (1)

Input: Complete FSMs S and T
Output: A shortest separating sequence 

of FSMs S and T (if it exists)

Step 1. Derive the intersection S ∩
 

T
If the intersection is complete then the 
FSMs S and T are non-separable
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DERIVING A SEPARATING 
SEQUENCE OF TWO FSMs (2)

Step 2. Derive a 
truncated successor 
tree of the 
intersection S ∩

 
T

Successor tree of S ∩T

s1t1

i-succesor

P ⊆
S ×T
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TERMINATION RULES FOR 
A NODE WITH LABEL P

Termination rule 1
There exists an input i s.t. 

for each state of the set 
P the transition under i 
is undefined in the 
intersection S ∩

 
T

successfully separated

Termination rule 2
There exists a node at a 

jth level, j < k, labeled 
with subset R ⊆

 
P

a shortest separating 
sequence cannot be 
derived using this 
path
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DERIVING A SEPARATING 
SEQUENCE OF TWO FSMs (3)

Let there be a path 
labeled with α to a leaf 
node labeled with the 
subset P where a 
transition under i is 
undefined for each state 
of P

Then αi is a shortest 
separating sequence of 
S and T

Successor tree of S ∩T

s1t1

α

P ⊆
S ×T

. . .

. . .

i
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UPPER BOUND ON SEPARATING 
SEQUENCE LENGTH

Given FSMs S with n states
and T with m states, 
the length of a shortest separating
sequence is at most 2nm−1

The upper bound is reachable
but possibly only for exponential number of 

inputs
Never experimentally reached the upper 
bound
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DERIVING A COMPLETE TEST SUITE 
W.R.T. < S, ∼, Subnd (MM)> (1)

Input: FSMs S and MM 
Output: A complete test suite TS w.r.t. 
<S, ∼, Subnd (MM)>

Step 1. Derive the intersection 
S ∩

 
MM
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DERIVING A COMPLETE TEST SUITE 
W.R.T. <S, ∼, Subnd (MM)> (2)

Step 2. Derive a 
truncated successor 
tree of the intersection 
S ∩

 
MM

There is an outgoing edge 
from a non-leaf node 
labeled with i to the 
nodes labeled with 
each non-empty 
subset of the i- 
successor of the subset 
P

Successor tree of S∩MM

s1t1

P is the
i-succesor

P1 ⊆
 

P ⊆
S ×T

Pk ⊆
 

P ⊆
S ×T

. . .

. . . 
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TERMINATION RULES FOR 
THE NODE WITH LABEL P

Termination rule 1
There exists an input i s.t. 

for each state of the set 
P the transition under i 
is undefined in the 
intersection S ∩

 
T

Termination rule 2
There exists a node of this 

path labeled with 
subset R ⊆

 
P

Termination rule 3
P ⊇

 
{(s, t)} and the 

already derived part of 
the tree has a node 
labeled with {(s, t)}

and
an input sequence α

 
that 

labels the path from the 
root to this node does 
not label any other path 
in the tree
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DERIVING A COMPLETE TEST SUITE 
W.R.T. <S, ∼, Subnd (MM)> (3)

For each path terminated using Rule 1, include into 
TS an input sequence which labels the path 
appended with an input i s.t. a transition from each 
state of P under i is undefined in the intersection 
S ∩ MM
For each path of the tree terminated using Rule 2 or 
Rule 3, include into TS the longest prefix of an input 
sequence that labels the path, with the following 
property:
For the tail input i that labels the edge from the node 

labeled with the set P, there exists state (s,m) ∈
 

P 
such that outS∩MM ((s,m), i) ⊂

 
outMM (m, i)
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Example

Tree of the previous 
exhaustive test

FSMs S and MM

S∩M 
M

a1 c3 b2

x c3/1 b2/0 c3/0

y b2/0 c3/1 a1/0; 
c3/1

FSM S ∩ MM

xy also is an exhaustive 
test suite w.r.t. MM

S   a b c MM 1 2 3

x c/1 c/0 b/0 x 3/1 3/0 2/0

y b/0 a/0;
c/1

c/1 y 2/0 1/0;
3/1

3/1;
1/0
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DERIVING A COMPLETE TEST SUITE 
w.r.t. <S, ∼, ℜm >

Theorem. Given the specification FSM S 
with n states a test suite which contains 
each input sequence of length 2mn-1 is 
complete w.r.t. <S, ∼, ℜm >
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STATE COUNTING 
ALGORITHM (1)

Main ideas:
to derive a truncated tree of S
to terminate a path when we are sure 
that for each FSM T with m states the 
input sequence that labels the path 
traverses two equal subsets of the 
intersection S ∩ T
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STATE COUNTING 
ALGORITHM (2)

A current node labeled with the subset P 
of states of S is claimed as a leaf node 
if the path from the root to this node 
has 2|P|∙m nodes labeled with subsets of 
P
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MODIFICATION
The node Current at kth level labeled with subset P is a 

leaf if:

1. A subset K ⊆
 

P can be represented as the union of 
subsets Pj

2. For each Pj the prefix of the path to the node at the 
lth level, l < k, has (2|Pj|⋅m-1) nodes labeled with the 
set Pj,

3. The suffix of the path from the node at the lth level 
to the node Current has (2(|P|-|K|)⋅m) nodes labeled 
with subsets of the set P
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EXAMPLE (1)
P = {1,2,3,4,5}, M = {a, b}

The number of different non- 
empty sets of the P ×M = 
210 - 1
K = {1,2} ∪ {3,4}

The number of different non- 
empty subsets of {1,2} ×M = 
24 – 1 = 15
The only sets which do not 
include non-empty subsets 
of {1,2} ×M and {3,4} ×M 
are subsets of {5} ×M

…
↓

non-empty subsets of {1,2} ×M 
…
↓

non-empty subsets of {1,2} ×M
(lth level)

↓
non-empty subsets of {5} ×M

(kth level, k > l)
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EXAMPLE (2)
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EXPERIMENTAL RESULTS
On average, tests w.r.t. a mutation machine 
MM using modified algorithm are twice 
shorter and this gain increases when MM is 
more deterministic
On average, tests w.r.t. a “black box” are 1.5 
times shorter

More rigorous analysis is needed to shorten 
tests w.r.t. a “black box”
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FUTURE WORK

Both algorithms do not return a 
shortest test suite w.r.t. <S, ∼,
Subnd(MM)> and w.r.t. <S, ∼, ℜm>
Adaptive tests using the r-
distinguishability relation could be 
shorter
More rigorous experimental results 
could be interesting
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Thanks for your attention!
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