DERIVING EXHAUSTIVE TEST SUITES FOR NONDETERMINISTIC FSMs W.R.T. NON-SEPARABILITY RELATION

Ekaterina Akenshina,
Natalia Shabaldina,
Nina Yevtushenko

Tomsk State University,
36 Lenin str., Tomsk, 634050, Russia
OUTLINE

- Introduction
- Relations between NFSMs and ‘all weather conditions’ assumption
- Separating two NFSMs
- Test suite derivation w.r.t. a mutation machine
- Test suite derivation w.r.t. “black box”
- Future work
WHY NONDETERMINISTIC?

- FSMs serve as an underlying model for SDL specifications as well as for UML state charts and those FSMs are nondeterministic.

- PROMELA that is used in the model checker SPIN also allows a nondeterministic behavior.

- Software mutation testing.

Nondeterministic descriptions usually are more compact than the corresponding deterministic models.
FINITE STATE MACHINE

$\mathcal{S} = \langle S, I, O, h_S, s_1 \rangle$

S – set of states
I – input alphabet
O – output alphabet
h_S – behavior relation,

$h_S \subseteq S \times I \times O \times S$

s_1 – the initial state

$\text{out}_S(s, \alpha) = \{ \beta | \exists s' \in S \ (s, \alpha, \beta, s') \in h_S \}$
RELATIONS BETWEEN NFSMs

- FSMs T and S are equivalent if
 \[\forall \alpha \in I^* (\text{out}_T(t_1, \alpha) = \text{out}_S(s_1, \alpha)) \]
- FSM T is a reduction of S if
 \[\forall \alpha \in I^* (\text{out}_T(t_1, \alpha) \subseteq \text{out}_S(s_1, \alpha)) \]
- FSMs T and S are non-separable if
 \[\forall \alpha \in I^* (\text{out}_T(t_1, \alpha) \cap \text{out}_S(s_1, \alpha) \neq \emptyset) \]
- FSMs T and S are r-compatible if T and S have a common reduction

Separability \Rightarrow non-reduction \Rightarrow r-distinguishability \Rightarrow non-equivalence
An implementation FSM Imp is *conforming* if $Imp \sim S$

The objective of MBT testing – to detect each nonconforming $Imp \in FD$
‘ALL WEATHER CONDITIONS’ ASSUMPTION

holds

+ there exist test suite derivation methods
- sometimes this assumption is not realistic
- each test case is applied several times

does not hold

+ realistic
+ each test case is applied only once
- existing test derivation methods do not guarantee the fault coverage
DETECTING NONCONFORMING IUT WHEN ‘ALL WEATHER CONDITIONS’ ASSUMPTION DOES NOT HOLD

- **Preset tests (experiments)**
 Guarantee to detect an implementation that is separable with the specification

- **Adaptive tests (experiments)**
 Guarantee to detect an implementation that is \sim-distinguishable with the specification
NON-SEPARABILITY RELATION

Complete FSMs T and S are **non-separable** if for each input sequence α

$$[\text{out}_T(t_0, \alpha) = \text{out}_S(s_0, \alpha)]$$

If there exists an input sequence α

$$[\text{out}_T(t_0, \alpha) \neq \text{out}_S(s_0, \alpha)]$$

then FSMs T and S are **separable**

α - a *separating* sequence of FSMs T and S
TESTING W.R.T. THE NON-SEPARABILITY RELATION

- Fault model \(<S, \sim, FD>\) where

\(S\) - the specification FSM
\(\sim\) - the non-separability relation
\(FD\) - the fault domain

All FSMs are complete
EXHAUSTIVE AND SOUND TESTS

- A test suite - a finite set of finite input sequences

- A test suite is exhaustive w.r.t. $<S, \sim, FD>$ if the test detects each $Imp \in FD$ that is separable with S

- A test suite is sound w.r.t. $<S, \sim, FD>$ if each $Imp \in FD$ that is non-separable with S passes the test suite

- A test suite is complete w.r.t. $<S, \sim, FD>$ if the test suite is sound and complete

We derive an exhaustive test suite
Fault models

\(<S, \sim, Sub_{nd}(MM)>\)

and

\(<S, \sim, \mathcal{R}_m>\)

have finite fault domains

\(\Downarrow\)

A test suite can be derived by explicit enumeration
Intersection $S \cap T$ is the largest connected submachine of the FSM $<S \times T, I, O, h, s_1 t_1>$ where

$(st, i, o, s' t') \in h$

\iff

$(s, i, o, s') \in h_S \& (t, i, o, t) \in h_T$
DERIVING A SEPARATING SEQUENCE OF TWO FSMs (1)

Input: Complete FSMs S and T

Output: A shortest separating sequence of FSMs S and T (if it exists)

Step 1. Derive the intersection $S \cap T$

If the intersection is complete then the FSMs S and T are non-separable
Step 2. Derive a truncated successor tree of the intersection $S \cap T$
Termination Rules for a Node with Label P

Termination rule 1
There exists an input i s.t. for each state of the set P the transition under i is undefined in the intersection $S \cap T$ successfully separated.

Termination rule 2
There exists a node at a jth level, $j < k$, labeled with subset $R \subseteq P$ a shortest separating sequence cannot be derived using this path.
Let there be a path labeled with α to a leaf node labeled with the subset P where a transition under i is undefined for each state of P.

Then αi is a shortest separating sequence of S and T.

Successor tree of $S \cap T$
UPPER BOUND ON SEPARATING SEQUENCE LENGTH

- Given FSMs S with n states and T with m states, the length of a shortest separating sequence is at most 2^{nm-1}.

- The upper bound is reachable but possibly only for exponential number of inputs.

- Never experimentally reached the upper bound.
DERIVING A COMPLETE TEST SUITE W.R.T. $<S, \sim, Sub_{nd}(MM)>$ (1)

Input: FSMs S and MM

Output: A complete test suite TS w.r.t. $<S, \sim, Sub_{nd}(MM)>$

Step 1. Derive the intersection $S \cap MM$
Step 2. Derive a truncated successor tree of the intersection $S \cap MM$.

There is an outgoing edge from a non-leaf node labeled with i to the nodes labeled with each non-empty subset of the i-successor of the subset P.

Successor tree of $S \cap MM$:

- $s1f1$
- P is the i-successor of $P_k \subseteq P \subseteq S \times T$ for each k.
TERMlNATION RULES FOR
THE NODE WITH LABEL P

Termination rule 1
There exists an input i s.t.
for each state of the set P the transition under i
is undefined in the intersection $S \cap T$

Termination rule 2
There exists a node of this path labeled with
subset $R \subseteq P$

Termination rule 3
$P \supseteq \{(s, t)\}$ and the already derived part of
the tree has a node labeled with $\{(s, t)\}$
and
an input sequence α that labels the path from the
root to this node does not label any other path
in the tree
For each path terminated using Rule 1, include into TS an input sequence which labels the path appended with an input i s.t. a transition from each state of P under i is undefined in the intersection $S \cap MM$.

For each path of the tree terminated using Rule 2 or Rule 3, include into TS the longest prefix of an input sequence that labels the path, with the following property:

For the tail input i that labels the edge from the node labeled with the set P, there exists state $(s,m) \in P$ such that $\text{out}_{S \cap MM}(s,m, i) \subset \text{out}_{MM}(m, i)$.
Example

Tree of the previous exhaustive test

<table>
<thead>
<tr>
<th>S</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>$M M$</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>$c/1$</td>
<td>$c/0$</td>
<td>$b/0$</td>
<td>x</td>
<td>$3/1$</td>
<td>$3/0$</td>
<td>$2/0$</td>
</tr>
<tr>
<td>y</td>
<td>$b/0$</td>
<td>$a/0$; $c/1$</td>
<td>$c/1$</td>
<td>y</td>
<td>$2/0$</td>
<td>$1/0$; $3/1$</td>
<td>$3/1$; $1/0$</td>
</tr>
</tbody>
</table>

FSMs S and $M M$

$S \cap M M$

<table>
<thead>
<tr>
<th>$S \cap M M$</th>
<th>$a1$</th>
<th>$c3$</th>
<th>$b2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>$c3/1$</td>
<td>$b2/0$</td>
<td>$c3/0$</td>
</tr>
<tr>
<td>y</td>
<td>$b2/0$</td>
<td>$c3/1$</td>
<td>$a1/0$; $c3/1$</td>
</tr>
</tbody>
</table>

FSM $S \cap M M$

xy also is an exhaustive test suite w.r.t. $M M$
DERIVING A COMPLETE TEST SUITE w.r.t. $<S, \sim, R_m>$

Theorem. Given the specification FSM S with n states a test suite which contains each input sequence of length 2^{mn-1} is complete w.r.t. $<S, \sim, R_m>$
STATE COUNTING ALGORITHM (1)

Main ideas:

- to derive a truncated tree of S
- to terminate a path when we are sure that for each FSM T with m states the input sequence that labels the path traverses two equal subsets of the intersection $S \cap T$
A current node labeled with the subset P of states of S is claimed as a leaf node if the path from the root to this node has $2^{|P|} \cdot m$ nodes labeled with subsets of P.
The node *Current* at k^{th} level labeled with subset P is a leaf if:

1. A subset $K \subseteq P$ can be represented as the union of subsets P_j.
2. For each P_j the prefix of the path to the node at the l^{th} level, $l < k$, has $(2^{|P_j|} \cdot m - 1)$ nodes labeled with the set P_j.
3. The suffix of the path from the node at the l^{th} level to the node *Current* has $(2^{(|P| - |K|)} \cdot m)$ nodes labeled with subsets of the set P.

MODIFICATION
EXAMPLE (1)

- \(P = \{1,2,3,4,5\}, \; M = \{a, b\} \)
 - The number of different non-empty sets of the \(P \times M = 2^{10} - 1 \)
- \(K = \{1,2\} \cup \{3,4\} \)
 - The number of different non-empty subsets of \(\{1,2\} \times M = 2^{4} - 1 = 15 \)
- The only sets which do not include non-empty subsets of \(\{1,2\} \times M \) and \(\{3,4\} \times M \) are subsets of \(\{5\} \times M \)

\[\begin{align*}
 \text{non-empty subsets of } \{1,2\} \times M \\
 \downarrow \\
 \text{non-empty subsets of } \{1,2\} \times M \\
 \downarrow \\
 \text{non-empty subsets of } \{5\} \times M \\
 \downarrow \\
 \text{(\(k \)th level, } k > l) \end{align*} \]
EXAMPLE (2)
EXPERIMENTAL RESULTS

- On average, tests w.r.t. a mutation machine MM using modified algorithm are twice shorter and this gain increases when MM is more deterministic.

- On average, tests w.r.t. a “black box” are 1.5 times shorter.

More rigorous analysis is needed to shorten tests w.r.t. a “black box.”
FUTURE WORK

- Both algorithms do not return a shortest test suite w.r.t. \(<S, \sim, \text{Sub}_{na}(MM)\rangle\) and w.r.t. \(<S, \sim, \mathcal{R}_m\rangle\).

- Adaptive tests using the \(r\)-distinguishability relation could be shorter.

- More rigorous experimental results could be interesting.
Thanks for your attention!