
GENERATING MINIMAL
FAULT DETECTING
TEST SUITES FOR
BOOLEAN
EXPRESSIONS

ANGELO GARGANTINI
UNIVERSITY OF BERGAMO
ITALY

GORDON FRASER
UNIVERSITY OF SAARLANDES
GERMANY

OUTLINE
1. Intoduction about testing of (DNF) logic expressions

• Boolean expressions: where to find them, how to test them
• For boolean specification in DNF

• Fault classes
• Classical testing criteria

2. A new way of generating fault detecting tests

• How to discover a fault
• Using SAT solvers to generate tests
• Optimizations

3. Experiments

A. Gargantini Generating minimal fault detecting test suites for Boolean expressions

2

LOGIC PREDICATES AND
CLAUSES
A predicate is an expression that evaluates to a Boolean
value
Predicates can contain

• boolean variables
• non-boolean variables that contain >, <, ==, >=, <=, !=
• boolean function calls

Internal structure is created by logical operators
¬ the negation operator
∧

the and operator

∨

the or operator
→

the implication operator

⊕

the exclusive or operator
↔

the equivalence operator

A clause is a predicate with no logical operators

A. Gargantini Generating minimal fault detecting test suites for Boolean expressions

3

EXAMPLES
(a < b) ∨

f (z) ∧

D ∧

(m >= n*o)

Four clauses:

• (a < b) – relational expression
• f (z) – boolean-valued function
• D – boolean variable
• (m >= n*o) – relational expression

A. Gargantini Generating minimal fault detecting test suites for Boolean expressions

4

DISJUNCTIVE NORMAL FORM

A. Gargantini Generating minimal fault detecting test suites for Boolean expressions

8

FAULT CLASSES FOR BOOLEAN
EXPRESSIONS
There exist typical errors done by programmers

Errors cause faults in the expression

• Faults grouped in fault classes
• For DNF expressions there classical fault classes

A. Gargantini Generating minimal fault detecting test suites for Boolean expressions

10

DNF FAULT CLASSES

A. Gargantini Generating minimal fault detecting test suites for Boolean expressions

11

FAULT CLASS HIERACHY

Not all the faults are
equal

• Among the fault classes it
may exist a hierarchy

• A class F1 subsumes
another F2 if a test suite
that is able to detect all
the faults in F1 then it will
also detect all the faults in
F2.

The hierarchy is useful
when generating tests

A. Gargantini
Generating minimal fault detecting test suites for Boolean expressions 13

F1

F2

FAULT DETECTION
RELATIONSHIPS

A. Gargantini Generating minimal fault detecting test suites for Boolean expressions

14

Expression
Negation Fault

ENF

Literal
Insertion

Fault
LIF

Term
Omission Fault

TOF

Literal
Reference

Fault
LRF

Literal
Negation Fault

LNF

Operator
Reference

Fault
ORF+

Literal
Omission

Fault
LOF

Term
Negation

Fault
TNF

Operator
Reference

Fault
ORF*

TESTING CRITERIA
To target these faults, several testing criteria have been
(and are continusly) introduced

A testing criteria must define an algorithm to derive the
tests

• It analyzes the structure of the expression
• It find the right truth values for the clauses

simplest: implicant Coverage

• Make each implicant evaluate to “true”

A. Gargantini Generating minimal fault detecting test suites for Boolean expressions

15

OTHER TESTING CRITERIA
MAX-A and MAX-B

• Weyuker, Goradia, and Singh
Multiple Unique True Points (MUTP)
Multiple Near False Points (MNFP)
Corresponding Unique True Point Near False Point
(CUTPNFP)
MUMCUT = MUTP + MNFP + CUTPNFP

• Chen, Lau, and Yu
It has been proved that MUMCUT criteria detect all the
faults in the hierarchy

• Very efficient (faults/number of tests)
• Several variations to reduce number of tests
• New criteria with different fault detection capability

A. Gargantini Generating minimal fault detecting test suites for Boolean expressions

16

A NEW WAY TO
GENERATE FAULT
DETECTING TESTS

A. Gargantini

17Generating minimal fault detecting test suites for Boolean expressions

BASIC PRINCIPLES
Instead of introducing a new testing
criterion
a generation methods that targets
explicitly the fault classes

• new fault classes can be added if neeeded
• or removed

A. Gargantini Generating minimal fault detecting test suites for Boolean expressions

18

trend
Testing and proving become
complementary:
tools, methods and techinques generally
used for property verification can be
effiently employed to solve testing problems

trend
Testing and proving become
complementary:
tools, methods and techinques generally
used for property verification can be
effiently employed to solve testing problems

DETECTION CONDITION

A. Gargantini Generating minimal fault detecting test suites for Boolean expressions

19

DETECTION CONDITION
EXAMPLE

A. Gargantini Generating minimal fault detecting test suites for Boolean expressions

20

DETECTING ALL THE FAULTS
IN A CLASS

A. Gargantini Generating minimal fault detecting test suites for Boolean expressions

21

ADEQUACY OF A TEST SUITE

A. Gargantini Generating minimal fault detecting test suites for Boolean expressions

22

SAT-BASED TEST
GENERATION METHOD

A. Gargantini Generating minimal fault detecting test suites for Boolean expressions

23

Fault
Classes

Bool
Spec

Test
Predicate
Generator

Test
Predicate

s

Test Suite
Generator

Test
Suite

Model =
test

SAT

Test
predicate

Very naive: a
lot of tests
and time

UNFEASIBLE TEST
PREDICATES

A. Gargantini Generating minimal fault detecting test suites for Boolean expressions

24

MONITORIN
G

A. Gargantini Generating minimal fault detecting test suites for Boolean expressions

25

Test
Predicate

s

Test Suite
Generator

Test
Suite

Test +
Cov Info

SAT

Test
predicate

Coverage
Evaluator
Coverage
Evaluator

Model =
test A test covers other

test predicates?

MONITORING COVERAGE

A. Gargantini Generating minimal fault detecting test suites for Boolean expressions

26

ORDERING

A. Gargantini Generating minimal fault detecting test suites for Boolean expressions

27

Test
Predicates

Test Suite
Generator

Test
Suite

Test +
Cov Info

SAT

Test
predicate

TP
Ordering

TP
Ordering

Coverage
Evaluator

Model =
test Ordering test

predicates may
improve
efficiency?

ORDERING TEST PREDICATES

When monitoring is applied the order in which test predicates
are selected may impact the size of the resulting test suite.

• Gordon Fraser, Angelo Gargantini, and Franz Wotawa. On the order of
test goals in specification-based testing. Journal of Logic and Algebraic
Programming, 78(6), 472-490, 2009.

Random order
• randomly take the next tp

Subsuming order
• If the subsuming relation between fault classes is known, or at least a

subsumption relationship is suspected to be in place due some empirical
data, it can be used to order tps

• Start with the test predicates coming from top classes in the hierarchy
• LIF, LRF, LOF, TOF, LNF, ORF+, ORF*, TNF, and ENF.

A. Gargantini Generating minimal fault detecting test suites for Boolean expressions

28

COLLECTING

A. Gargantini Generating minimal fault detecting test suites for Boolean expressions

29

Test
Predicate

s

Test Suite
Generator

Test
Suite

Test +
Cov Info

SAT

Test
predicate

TP
Ordering

Coverage
Evaluator

Model =
test

Instead of ONE
tp , take many
TPs, so the test
will cover them
all

TP
Collecting

TP
Collecting

COLLECTING TEST
PREDICATES

Test suite
builder

Model = test that
covers all the test
predicates collected

SAT
Collected test

predicates
tp1 /\ tp2 /\ tp3

Instead of one test for every
tp, collect the tps to build a
conjoint

Note: When collecting, infeasible tps must be
ignored, incompatible tps must be skipped

A. Gargantini Generating minimal fault detecting test suites for Boolean expressions

30

REDUCTION

A. Gargantini Generating minimal fault detecting test suites for Boolean expressions

32

Test
Predicate

s

Test Suite
Generator

Test
Suite

Test +
Cov Info

SAT

Test
predicate

TP
Ordering

Coverage
Evaluator

Model =
test

Any
unnecessary test
in the test suite?

TP
Collecting

ReductionReduction

POST REDUCTION
(MINIMIZATION)
A test suite is minimal with regard to an
objective if removing any test case from the
test suite will lead to the objective no longer
being satisfied.

• Some tests may be useless
simple greedy heuristic to the minimum set
covering problem for test suite minimization
Note: Monitoring and minimization can behave
very differently:

• Minimization requires existing, full test suites
• while monitoring checks test predicates on the fly

during test case generation

A. Gargantini Generating minimal fault detecting test suites for Boolean expressions

33

EXPERIMENTS

A. Gargantini

34Generating minimal fault detecting test suites for Boolean expressions

EXPERIMENTS
Benchmark: 20 Boolean expressions in a traffic collision
avoidance system (TCAS).

• Introduced for MAX-A and MAX-B (Weyuker et al.)
• Used by MUMCUT (Chen, Lau, and Yu)
• And minimal-MUMCUT (Kaminksy and Ammann)

GOAL: reduce the test suite size

A. Gargantini Generating minimal fault detecting test suites for Boolean expressions

35

COMPARISON AMONG OUR
STRATEGIES

Optimization Reduction of the test suite size
Avg Var Max

Subsumption order
instead of random order

5% 0.4% 19%

Reduction 6% 0.4% 31%
Collection 24% 4% 71%

The smallest test suites are
generated with monitoring,
ordering by subsumption,
collecting, and minimizing.

A. Gargantini
Generating minimal fault detecting test suites for Boolean expressions 36

COLLECTION IS EXPENSIVE

328 times the time required by the
strategy without collection
Collecting test predicates is effective
at reducing the number of test cases,
but computationally expensive.

NO COLL COLL
RND SUB RND SUB

Time (sec) 190.0 44.2 45821.2 18380

A. Gargantini
Generating minimal fault detecting test suites for Boolean expressions 37

COMPARISON WITH MUMCUTS

• Much better than
the original
MUMCUT strategy

• Always better than
the new MUMCUT
strategy

• Comparable w.r.t
Minimal MUMCUT

A. Gargantini
Generating minimal fault detecting test suites for Boolean expressions 38

SA
T

COMPARISON WITH MIN-
MUMCUT

Our method reduces the number of
test cases necessary to cover all
faults of these classes in comparison
to MinimalMUMCUT.
A. Gargantini

Generating minimal fault detecting test suites for Boolean expressions 39

CONCLUSIONS
It is possible to generate tests explicitly targeting faults

• SAT solvers can be employed
Several optimizations can be applied

• Monitoring, ordering, collecting, minimization
In comparison to *MUMCUT, it reduces the number of
test cases necessary to cover all faults of these classes

Future work:

• Not only DNF
• Improve efficiency: reducing the number of runs of the SAT

A. Gargantini Generating minimal fault detecting test suites for Boolean expressions

40

	GENERATING MINIMAL FAULT DETECTING TEST SUITES FOR�BOOLEAN EXPRESSIONS
	OUTLINE
	LOGIC PREDICATES AND CLAUSES
	EXAMPLES
	DISJUNCTIVE NORMAL FORM
	FAULT CLASSES FOR BOOLEAN EXPRESSIONS
	DNF FAULT CLASSES
	FAULT CLASS HIERACHY
	FAULT DETECTION RELATIONSHIPS
	TESTING CRITERIA
	OTHER TESTING CRITERIA
	A NEW WAY TO GENERATE FAULT DETECTING TESTS
	BASIC PRINCIPLES
	DETECTION CONDITION
	DETECTION CONDITION EXAMPLE
	DETECTING ALL THE FAULTS IN A CLASS
	ADEQUACY OF A TEST SUITE
	SAT-BASED TEST GENERATION METHOD
	UNFEASIBLE TEST PREDICATES
	MONITORING
	MONITORING COVERAGE
	ORDERING
	ORDERING TEST PREDICATES
	COLLECTING
	COLLECTING TEST PREDICATES
	REDUCTION
	POST REDUCTION (MINIMIZATION)
	EXPERIMENTS
	EXPERIMENTS
	COMPARISON AMONG OUR STRATEGIES
	COLLECTION IS EXPENSIVE
	COMPARISON WITH MUMCUTS
	COMPARISON WITH MIN-MUMCUT
	CONCLUSIONS

