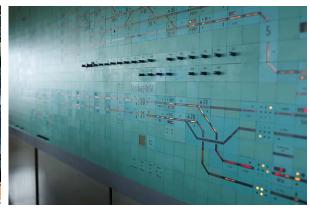
Relation of Model-Based Testing and Safety-Relevant Standards

Dr. Stephan Weißleder

Research Manager Testing

Department Quality of Embedded Systems
(QUEST)

Fraunhofer-Institute FIRST

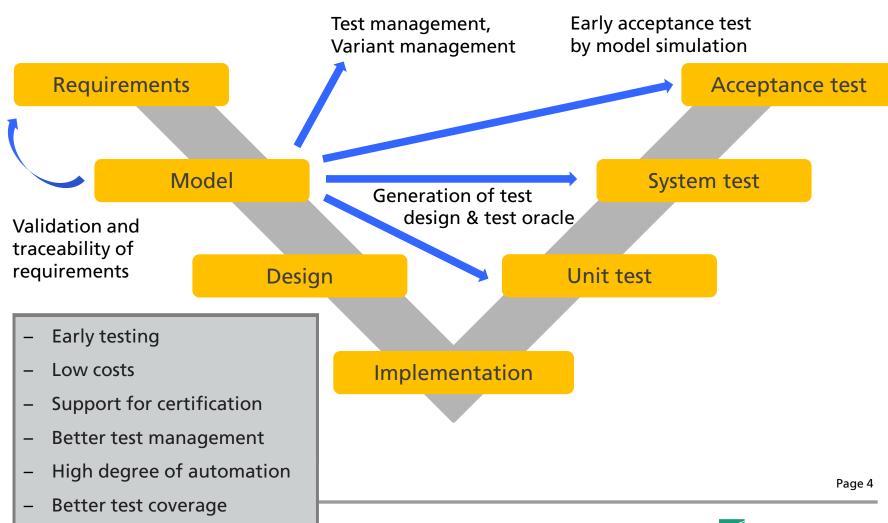


Fraunhofer-Institute FIRST – Department QUEST

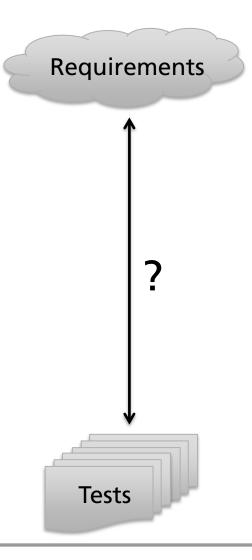
Review and Assessment

Testing

Verification

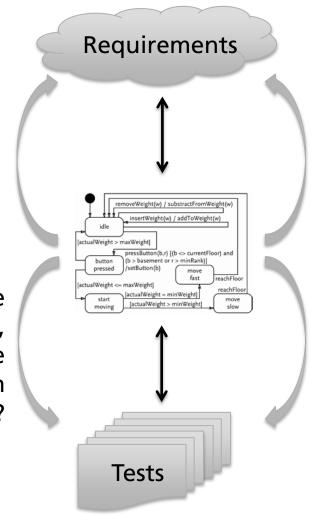


Model-Based Testing


Model-Based Testing

How Does MBT Support Safety-Relevant Standards?

How Does MBT Support Safety-Relevant Standards?



How Does MBT Support Safety-Relevant Standards?

Coverage

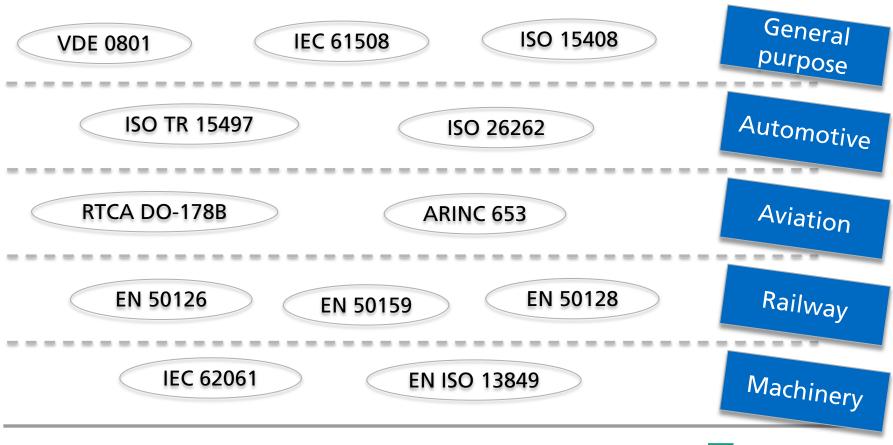
Relation of model coverage and requirements coverage?

Measure/Achieve code coverage, More detailed coverage information for system tests?

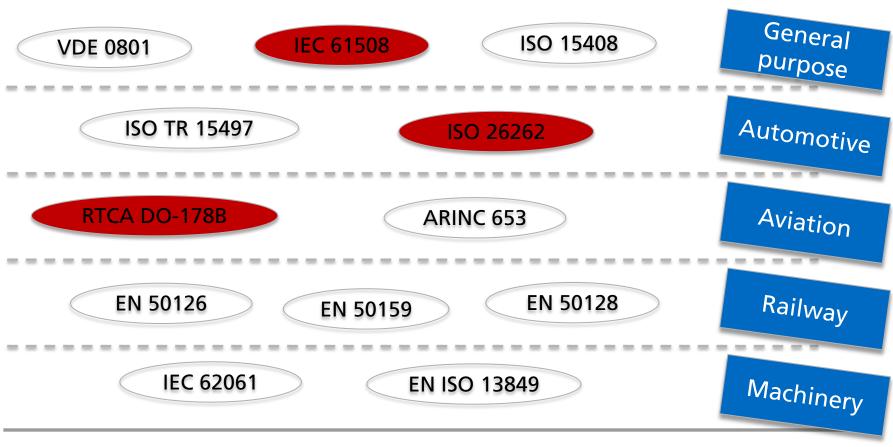
Traceability

Validation of requirements, Better Traceability?

Higher Efficiency, Automatic Traceability



How do Safety-Relevant Standards Support MBT?


Standards

The good things about standards is there are so many to choose from.

Standards

The good things about standards is there are so many to choose from.

ISO 26262 (under publication)

Table 4 — Correctness of implementation of system design specification and technical safety requirements

26262-4

	Methods		ASIL			
			В	С	D	
1a	Requirements-based test ^a	++	++	++	++	
1b	Fault injection test ^b	+	++	++	++	
1c	Back-to-back test ^c	+	+	++	++	

a A requirements-based test denotes a test against functional and non-functional requirements.

Table 14 — Structural coverage metrics at the software unit level

26262-6

	Methods	ASIL			404	
	Metriods			В	С	D
1a	Statement coverage		++	++	+	+
1b	Branch coverage		+	++	++	++
1c	MC/DC (Modified Condition/Decision Coverage)		+	+	+	++

^b A fault injection test uses special means to introduce faults into the test object during runtime. This can be done within the software via a special test interface or specially prepared hardware. The method is often used to improve the test coverage of the safety requirements, because during normal operation safety mechanisms are not invoked.

^c A back-to-back test compares the responses of the test object with the responses of a simulation model to the same stimuli, to detect differences between the behaviour of the model and its implementation.

ISO 26262 (under publication)

Table 4 — Correctness of implementation of system design specification and technical safety requirements

26262-4

	Methods		ASIL				
			В	С	D		
1a	Requirements-based test ^a	++	++	++	++		
1b	Fault injection test ^b	+	++	++	++		
1c	Back-to-back test ^c	+	+	++	++		

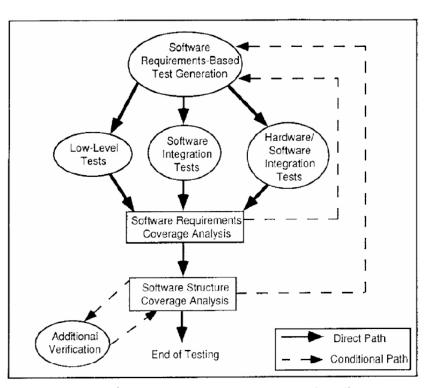
- a A requirements-based tes
- A fault injection test uses via a special test interface requirements, because during
- c A back-to-back test condifferences between the beh

"Testing activities are also treated differently since models can be used as a useful source of information for the testing process (model-based testing)."

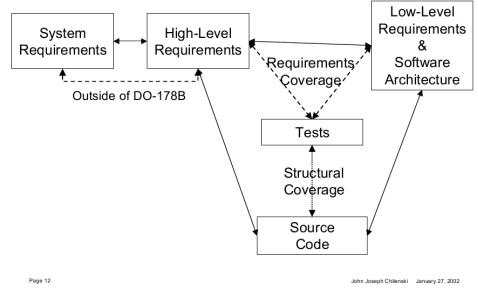
done within the software coverage of the safety

he same stimuli, to detect

Table 14 — Structural coverage metrics at the souware unit level


26262-6

Mathada					SIL _	20	
	Methods			В	С	D	
1a	Statement coverage		++	++	+	+	
1b	Branch coverage		+	++	++	++	
1c	MC/DC (Modified Condition/Decision Coverage)		+	+	+	++	



RTCA DO-178B - 1992

DALE	DAL D	DAL C	DAL B	DAL A
No effect	Minor	Major	Hazardous	Catastrophic

Traceability Requirements

(Source: DO-178B Standard)

(Source: John Joseph Chilenski)

RTCA DO-178B - 1992

Objective		DAL				
		В	C	D		
Test coverage of high-level requirements is achieved.	X	X	X	X		
Test coverage of low-level requirements is achieved.	X	X	X			
Test coverage of software structure is achieved. (MC/DC)	X					
Test coverage of software structure is achieved. (Decision Coverage)	X	X				
Test coverage of software structure is achieved. (Statement Coverage)	X	X	X			
Test coverage of software structure is achieved. (Data coupling / control coupling)	X	X	X			

Page 14

RTCA DO-178B - 1992

Objective		D	AL	L	
	Α	В	C	D	
Test coverage of high-level requirements is achieved.	X	X	X	X	
Test coverage of long long long long long long long long	X	X	X		
Test coverage of (MC/DC) No support for model-based testing. Things are getting better in DO-178C?					
Test coverage of software structure is achieved. (Decision Coverage)	X	X			
Test coverage of software structure is achieved. (Statement Coverage)	X	X	X		
Test coverage of software structure is achieved. (Data coupling / control coupling)	X	X	X		

	Technique/Measure *	Ref.	SIL 1	SIL 2	SIL 3	SIL 4
1	Probabilistic testing	C.5.1		R	R	R
2	Dynamic analysis and testing	B.6.5 Table B.2	R	HR	HR	HR
3	Data recording and analysis	C.5.2	HR	HR	HR	HR
4	Functional and black box testing	B.5.1 B.5.2 Table B.3	HR	HR	HR	HR
5	Performance testing	Table B.6	R	R	HR	HR
6	Model based testing	C.5.27	R	R	HR	HR
7	Interface testing	C.5.3	R	R	HR	HR
8	Test management and automation tools	C.4.7	R	HR	HR	HR
9	Forward traceability between the software design specification and the module and integration test specifications	C.2.11	R	R	HR	HR
10	Formal verification	C.5.12			R	R

NOTE 1 Software module and integration testing are verification activities (see Table B.9).

NOTE 2 See Table C.5.

NOTE 3 Technique 9. Formal verification may reduce the amount and extent of module and integration testing required.

NOTE 4 The references (which are informative, not normative) "B.x.x.x", "C.x.x.x" in column 3 (Ref.) indicate detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

* Appropriate techniques/measures shall be selected according to the safety integrity level.

Fraunhofer

Page 16

FIRST

	Technique/Measure *	Ref	SIL 1	SIL 2	SIL 3	SIL 4
1	Test case execution from boundary value analysis		R	HR	HR	HR
2	Test case execution from error guessing	C.5.5	R	R	R	R
3	3 Test case execution from error seeding			R	R	R
4	Test case execution from model-based test case generation	C.5.27	R	R	HR	HR
5	Performance modelling	C.5.20	R	R	R	HR
6	Equivalence classes and input partition testing		R	R	R	HR
7a	a Structural test coverage (entry points) 100 % **		HR	HR	HR	HR
7b	Structural test coverage (statements) 100 %**	C.5.8	R	HR	HR	HR
7c	Structural test coverage (branches) 100 %**	C.5.8	R	R	HR	HR
7d	Structural test coverage (conditions, MC/DC) 100 %**	C.5.8	R	R	R	HR

NOTE 1 The analysis for the test cases is at the subsystem level and is based on the specification and/or the specification and the code.

NOTE 2 See Table C.12.

NOTE 3 The references (which are informative, not normative) "B.x.x.x", "C.x.x.x" in column 3 (Ref.) indicate detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

- Appropriate techniques/measures shall be selected according to the safety integrity level.
- ** Where 100 % coverage cannot be achieved (e.g. statement coverage of defensive code), an appropriate explanation should be given.

Technique/Measure		Properties						
		Completeness of testing and integration with respect to the software design specification	Correctness of testing and integration with respect to the software design specification (successful completion)	Repeatability	Precisely defined testing configuration			
6	Model based testing (MBT)	R2	R2	R3	R2			
		MBT allows early exposure of ambiguities in specification and design, the MBT process starts with requirements R3 If rigorous reasoning is applied to modelling, and test case generation (TCG) is used	Evaluation of results and regression test suites is a key benefit of MBT R3 If rigorous modelling approach is applied, then objective evidence of coverage is possible	MBT (with TCG) aims at automatic execution of generated tests	MBT is automated, testing configuration has to be precisely defined; execution of the generated tests is similar to black box testing with the possibility to be combined with source code level coverage measurement			

Advantages:

- -Early requirements validation
- -Automatic test case generation
- -Combination of test case generation and code coverage measurement

Technique/Measure		Properties						
		Completeness of testing and integration with respect to the software design specification	Correctness of testing and integration with respect to the software design specification (successful completion)	Repeatability	Precisely defined testing configuration			
6 Model based	testing (MBT)	R2	R2	R3	R2			
		MBT allows early exposure of ambiguities in specification and design, the MBT process starts with requirements If rigor m ge (highly	Evaluation of results and regression test suites is a key benefit of MBT R3 If rigorous modelling approach is then objective evidence of the commended. Pased testing is the commended.	MBT (with TCG) aims at automatic execution of generated tests	MBT is automated, testing configuration has to be precisely defined; execution of the generated tests is similar to black box testing with the possibility to be combined with source code level coverage measurement			

Advantages:

- -Early requirements validation
- -Automatic test case generation
- -Combination of test case generation and code coverage measurement

Our mission is to bring model-based testing to industrial practice.

Dr. Stephan Weißleder stephan.weissleder@first.fraunhofer.de +49 (0)30 6392 1876

