Model Based Testing deployment in Telecommunication project

Szilárd Széli – Business Improvement Manager
Gábor Federics – GSM-R Test Manager

MBTUC11 – Berlin, October 18-20, 2011
NSN Budapest - R&D center production chain

From requirements…

R&D machinery

Product Management

Architecture

R&D Units

Customer TS & CuDo

…to software deliveries!

1,400,000,000 subscriber connected worldwide
Challenges in Testing

• Huge amount of existing (legacy) functionality
 ➢ More regression testing need

• Shorter release cycle
 ➢ Less time for testing

• More customization
 ➢ More specific function for smaller targets

• Economy
 ➢ Pressure on cost effectiveness

• Quality goals
 ➢ No quality sacrifice
Test Automation

So make it faster, let’s automate

1. Automate Test Execution
 - Make executable test case scripts
 - Schedule test run
 - Collect result

2. Automate Test result analysis
 - Compare test outcome with expected result
 - Report test result
 - Store/Archive result

3. Automate Test Design
 - Test design specification
 - Selecting best test techniques
 - Find optimal coverage
 - Document test cases
History of MBT in NSN Budapest

- First study on MBT in MSS during D-MINT project - 2008
 - Due to the existing partnership solution provided by Conformiq is used

- Initial presentation of MBT and pilot decision - 2009

- Pilot and Business case creation - 2010
 - Phase 1: clean the pipe - feasibility
 - Phase 2: ROI calculation - payback

- Decision and deployment in GSM-R - 2011
Pilot phase 1 - Project Scope and Goals

• Goals of the project
 • Introduce the concept of Automated Test Design to Intelligent Network Scrum team
 • Demonstrate that Conformiq Designer suite can be integrated with existing test harness in short term (3 weeks)
 • Create reusable assets of Automated Test Design

• What was the scope of the project
 • SUT: Release 4 Open Mobile Softswitch (MSS)
 • Testing objective: SINAP Charging
 • SUT accessed through Man Machine Interface (MML) using HIT test script language, and SINAP interfaces (IPSL protocol test tool)
Test architecture view of the scope of Phase 1
Test Architecture with ATD
Results from Pilot

During the pilot we reached

- Resources spent
 - Obtain domain knowledge 128 h
 - Work with model 45 h
 - Analyze system + logs 32h
 - Backend work 41 h

- MBT Training: 7 Certified Conformiq Technology Associate
- Conformiq Designer is integrated with esiting Test Automation framework in 3 weeks
- Reusable components ready
 - call state machine
 - template based reusable backend for different test tools (HIT, IPSL, CHA analyzer, Basic MSS Analyzer)
Phase 1 conclusion

- Integrating Conformiq Designer into our Test Harness was done with reasonable effort.
- MBT enforces understanding (thereby indirectly enforcing cooperation between teams) and documenting correct system behavior in form of models.
- Due to the complex domain MBT with proper model architecture is very likely to increase test design efficiency due to possibility for incremental changes.
- In Automated Test Design both test cases and execution scripts are generated with guaranteed traceability mapping at once. This avoids multi-stage human error.

GO for phase 2
Phase 2 – additional goals

• By comparison to previously available manually generated test suites (or appropriate estimates), assess what gains Automated Test Design can provide in the areas of
 • Productivity
 • test case quality
 • requirement coverage
 • requirements traceability
 • and ease of maintenance
Phase 2 result – ROI and Business Case

• Productivity
 – 100% Requirement coverage with 2/3 of original test cases (based on 7 requirements)
 ▪ 20 test cases → 14 test cases
 – Less time spent
 ▪ 650 → 550 hours: 15% improvement during initial model based testing (creating reusable asset)
 ▪ 278 → 172 hours: 40% improvement during incremental add-on built on top of existing reusable assets
 – Better functionality coverage
 ▪ 3 minor bugs found during pilot in an already tested feature (in live usage already)
 – Documentation inconsistencies
 ▪ Revealed challenges due to scattered documentation (common in Telco industry)

• Positive Business Case

break even during the 2nd year after ramp-up
GSM-R in general

- Railway fixed network
- Other EIRENE network(s)
- National EIRENE network
- Shunting communications
- International trains
- Wide area communications
- Train communications

Voice and data communications, eg:
- driver
- ERTMS/ETCS
- other on train users
- passenger Information
Deployment in GSM-R

• Goals of the deployment
 • Confirm MBT pilot results in real project environment in GSM-R program
 • Confirm business case
 • To show that technology can be adapted by MSS developers
 • Define Mode of Operation
 • Engineer feedback

• Scope of deployment
 • SUT: Open Mobile Softswitch for Railways
 • SUT accessed through Man Machine Interface (MML) using HIT test script language, H.248 and A interfaces (TTCN3 protocol test tool)
 • Test levels of deployment
 • Component Testing
 • Functional Testing
Deployment results
Work hour analysis

<table>
<thead>
<tr>
<th>Reference</th>
<th>Component Test Ratio</th>
<th>for reference</th>
<th>Legacy reference data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference program estimation (manual)</td>
<td>36.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference program reported (manual)</td>
<td>44.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSM-R Component1 historical expert opinion (manual)</td>
<td>40%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSM-R Component1 phase1 reported (MBT)</td>
<td>30%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSM-R Component1 phase2 reported (MBT)</td>
<td>28.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSM-R Component2 estimated (manual)</td>
<td>44.1%</td>
<td></td>
<td>Component 2</td>
</tr>
<tr>
<td>GSM-R Component2 reported (MBT)</td>
<td>34.6%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Deployment results
Code coverage analysis

<table>
<thead>
<tr>
<th>Area</th>
<th>Coverage Points</th>
<th>Code Coverage</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Component1 (manual)</td>
<td>410</td>
<td>Phase1</td>
<td>80.7%</td>
</tr>
<tr>
<td>Component1 (MBT)</td>
<td>410 609</td>
<td>Phase1 Phase2</td>
<td>87% 92%</td>
</tr>
<tr>
<td>Component2 (MBT)</td>
<td>119</td>
<td></td>
<td>97%</td>
</tr>
<tr>
<td>Component2 Database (MBT)</td>
<td>862</td>
<td></td>
<td>93%</td>
</tr>
<tr>
<td>Legacy example1 (manual)</td>
<td>20445</td>
<td></td>
<td>83.9%</td>
</tr>
<tr>
<td>Legacy example2 (manual)</td>
<td>20360</td>
<td></td>
<td>74.5%</td>
</tr>
</tbody>
</table>
Deployment results
Fault findings in Component1

- Component1 testing done both manually and model based
- Fault findings:

<table>
<thead>
<tr>
<th>Component1</th>
<th>Faults found</th>
<th>Code coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual testing</td>
<td>12</td>
<td>80.7%</td>
</tr>
<tr>
<td>Model based testing</td>
<td>12 + 9</td>
<td>87%</td>
</tr>
</tbody>
</table>

- According to root cause analysis results, 3 faults would be probably caught only during very late test phase
Deployment results
Summary

- Very good experience with database modeling
 - 20-30% gain in speed
 - Outstanding level of code coverage reached
- Results with MML modeling dissatisfactory
 - MML: commands in hierarchical structure used for system configuration via telnet interface
- Good experience with state-chart based component modeling
 - 25% gain in speed
 - Higher code coverage compared to manual test planning
 - Addition faults found after manual component test ready
- Positive results expected from Functional Testing
Integration into Agile work practices

- Continuous communication sessions established in all areas
 - 2 review levels must be ensured for feedback
- Model review
 - With modelers, specificators, lead designers
- TC review
 - With all the engineers in the effected domain

- New roles in Scrum team
 - Modeler
 - Backend scripter

- Automatic documentation into QC
Engineer satisfaction survey

- „A nicely built model can be understandable for anyone. There is no need to check several other documents, only the model”
- „This method is requires a systematic approach, so it decreases the negative effect of human factor”
- „Modeling is fast and comfortable after having experience. Longer TC generation times can be obstacle”
- „During the model creating very deep knowledge can be gathered about the system. This is challenging and motivating”
- „It is also motivating that serious code defects were found with MBT (after manual testing was done)”
Lessons learned

- MBT technology can be adopted with significant improvement on complex projects
- Step-by-step Pilot and deployment approach is needed with
 - Clear goals
 - Go/No-Go decision criteria
 - Business sponsorship
- Strict reporting practices needed for Business case validation
 - Fault reporting
 - Effort reporting for different activities
- Technology support is needed for proper ramp-up
 - On-site / remote support as requested
 - Attending an all reviews
 - To review also scripting backend
- Train not only modelers
 - Specificators (one per area)
 - Lead designers (one per area)
 - Test architects (one per area)
Questions?
Thank you!