
 Automated Test Design™ © 2011 Conformiq, Inc.

CONFORMIQ

DESIGNER

Automation of Test Design

with Model-Based Testing

(A Statechart-based Approach)

MBT UC 2011, Berlin, Germany

 Automated Test Design™ © 2011 Conformiq, Inc.

INTRODUCTION TO AUTOMATED

TEST DESIGN WITH MBT

 Automated Test Design™ © 2011 Conformiq, Inc.

Manual

Scripts-Based

Capture/Replay

Frameworks

Keyword Driven

Evolution of Software Testing

MBT

 Automated Test Design™ © 2011 Conformiq, Inc.

Model-Based Testing

• Umbrella term for any approach that uses

models for testing

• One of them is to use MBT for automating

test design

– Models reflect externally observable

behavior of the system to be tested

– MBT complements test execution

• First industrial standards (ES) being

developed at ETSI

– Multiple tools available in the market

– Involves stakeholders from different

application domains

Test Execution Engine

System Under Test

Test Adaptation

(System) Model

Generation

Test Scripts

Test Framework

 Automated Test Design™ © 2011 Conformiq, Inc.

• Model-Based Test Development Overview

• General Modeling Notation Requirements

– Modularization, Algorithms, Documentation

• Modeling System Interface

– Actions, Operations, Ports, Configurations

• Modeling System Behavior

– System State, System State Transition,

Non-Determinism

• Examples of Modeling Notation Styles (Annex)

– Rule-Based/EFSM, Statechart, Process-Oriented

Outline of ETSI Standard 202 951
(Requirements for Modelling Notations)

 Automated Test Design™ © 2011 Conformiq, Inc.

Automated Test Design Workflow

Develop

(System) Model

Direct & Review

Test Design

Generate Test Scripts

& Documentation

 Automated Test Design™ © 2011 Conformiq, Inc.

Automated Test Design Workflow

Develop

(System) Model

Direct & Review

Test Design

Use Test Scripts

& Documentation

 Automated Test Design™ © 2011 Conformiq, Inc.

MBT - A New Way of Testing

 Functionality vs Path

 SUT vs Environment

 Coverage vs Number of Tests

 Abstraction vs Detail

 Optimization vs Expert Opinion

 Flexible vs Fixed Test Sets

95% 42

Test 1: …

Test 2: …

Test 3: …

Test 1: …

Test 2: …

Test 3: …

 Automated Test Design™ © 2011 Conformiq, Inc.

What Remains the Same?

• The starting point will be an informal specification

– Customer: ”I want a ”

• Tests have to be validated

– Any testing artefact remains as good as the agreed

understanding of the specification

• Still infinitely many tests have to be executed to proove

that a SUT faithfully follows a specification

– But a limited amount of time is available for test execution

 Automated Test Design™ © 2011 Conformiq, Inc.

The Business Case for Automated Test Design

1

0

ROI Higher
productivity

Improved test
coverage

Savings in test
maintenance

Model reuse

Enabling new
ways of
working

Customizable
test sets

Test scripting
language

independence

 Automated Test Design™ © 2011 Conformiq, Inc.

Less customer found defects

More available resources

Shorter testing turnaround time

Reliable reports and documentation

Test suites with optimal coverage

Less Time
Spend less calendar time in test

process, get product out faster

Higher Quality
More effective test sets resulting in

a higher quality product

Reduced Cost
With less resource to higher quality

Automated Test Design Benefits

 Automated Test Design™ © 2011 Conformiq, Inc.

The BIG Picture: From Manual Test Design …

Version Control

Req & Test Mgmt

Test Design

SUT

Test Execution

 ?

Settings

Tests

Framework

Adapters

Issues

Fixes

Releases

Reqs

Test Desc

Code

Tests

Execution

Reports

Project Mgmt

 Automated Test Design™ © 2011 Conformiq, Inc.

CONFORMIQ Designer CONFORMIQ Modeler

The BIG Picture: … to Automated Test Design

Version Control

Project Mgmt Req & Test Mgmt

Modeling Test Design

SUT

Test Execution

 ?

Settings

Tests

Framework

Adapters

Issues

Fixes

Releases

Model

Reqs

Test Desc

Coverage

Code
Settings

Tests

Execution

Reports

Reqs

Tests

Reqs

Test Desc

 Automated Test Design™ © 2011 Conformiq, Inc.

Introduction Summary

• MBT is next step in evolution of software testing

• First industrial standards attest maturity

• Use MBT allows engineers to work (usually >5x)

more effectively and focus on the essense of testing

• Next to new notations & tools MBT requires a

change in thinking for management and engineers

• Automatic test generation is only one part of MBT

 Automated Test Design™ © 2011 Conformiq, Inc.

MODELING FOR TESTING

 Automated Test Design™ © 2011 Conformiq, Inc.

About (System) Models

• Structural view: SUT interface available for testing

– 1+ (logical) ports and parameterized input & output

(actions) reflecting controllable & observable interfaces

– At least one but possibly multiple parallel model components

• Behavioral view: The expected SUT operation

– Should focus on one or more aspects to be tested

– Can be defined using states, transitions, and operations

on inputs, outputs and component variables

– Possibly defined across a set of communicating components

 Automated Test Design™ © 2011 Conformiq, Inc.

About Modeling

• Who should write models?

– The people that write or script tests today!

• What is the starting point?

– Selecting first aspect of the functionality to be tested

– Identifying a suitable level of abstraction

 Automated Test Design™ © 2011 Conformiq, Inc.

Abstraction Level

• Level of detail used to describe functionality to be tested

• Selection from the specification

– Which interfaces are available for testing selected functionality?

– What are the relevant inputs & outputs on these interfaces?

– Extend inputs/outputs with parameters only as you model behavior

• Alternative: Selection from existing test framework

– Model functions/operations available in test automation (framework)

as inputs/outputs in system interface specification

– Extend inputs/outputs with parameters only as you model behavior

 Automated Test Design™ © 2011 Conformiq, Inc.

Conformiq’s Modeling Notation (QML)

• Hierarchical UML Statecharts

• Java based action language

• System interface specification

• Rich type system

• Multi component models

• Timing constraints

• Data constraints

 Automated Test Design™ © 2011 Conformiq, Inc.

Our Task: Testing of a VoIP Terminal

• Subject of Testing: Session Layer

• Specification: RFC 3261 “Session Initiation Protocol”

• Interfaces available: user & network

• Scope: Basic call functionality
– Call establishment

– Call termination (callee vs. callee initiated)

– Call cancelation

– Call timeouts (re-transmission & transaction)

• See also Conformiq white paper
– “Case Study: Automated Testing of X-Lite SIP Softphone”

 Automated Test Design™ © 2011 Conformiq, Inc.

Requirements Extracted from RFC 3261

A SIP User Agent must:

1. Establish a session with SIP ACK (Clause 13.2.2.4)

2. Terminate a session with SIP BYE (Clause 15.1.1)

3. Confirm a SIP BYE with a SIP 200 OK (Clause 15.1.2)

4. Re-send an SIP INVITE after timeout A (Clause 17.1.1.2)

5. Terminate an SIP INVITE after timeout B (Clause 17.1.2.2)

6. Terminate a SIP BYE request after timeout F (Clause 17.1.2.2)

7. Terminate a SIP CANCEL request after timeout F (Clause 17.1.2.2)

 Automated Test Design™ © 2011 Conformiq, Inc.

Identification of System Boundary

SIP Proxy

User Interface

(proprietary)

User

Network

Network Interface

 (SIP)
VoIP Phone

VoIP Phone

SUT

Make a call to...

 Automated Test Design™ © 2011 Conformiq, Inc.

Identification of Logical Interface

UserInput:

”call”, ”hang up”,

”cancel”

SipRequest: ”BYE”

SipResponse: “180 Ringing”,

”200 OK”, ”486 Busy Here”,

”487 Request Terminated”

SipRequest: “ACK”, “BYE”,

”CANCEL”, ”INVITE”

SipResponse: ”200 OK”

UserOutput:

”ringing”, ”call ended”

”call established”,

”timeout”

SIP User Agent Client

User

Network

 Automated Test Design™ © 2011 Conformiq, Inc.

QML Representation of System Interface

system { // system block alias system boundary definition

 Inbound userIn : UserInput; // port instance definition with valid message list

 Outbound userOut : UserOutput;

 Inbound netIn : SipResponse, SipRequest;

 Outbound netOut : SipRequest, SipResponse;

}

record SipRequest { // message type definition (ordered sequence)

 RequestLine startLine; // field of other structured type (definition elsewhere)

 String callId;

 String contact;

 CSeq cSeq;

 From from;

 int maxForwards;

 To to;

 Via[] vias; // unbounded list of via headers

 String msgbody;

}

 Automated Test Design™ © 2011 Conformiq, Inc.

data
types

value
types

boolean

numbers

int
(integers)

float
(rationals)

strings

record

union

reference
types

objects

ports

other
objects

arrays

Available QML Data Types

 Automated Test Design™ © 2011 Conformiq, Inc.

Modeling Behavior: State Machines

• One way to represent the behavior of a system

• At any moment in time the system is ”in” a state

• Transitions define state changes

– Can be triggered by an external input or timeout and/or fulfilment

of guard conditions

– When triggered can perform one or more actions such as

sending external output(s), marking the coverage of a

requirement, or operating on received or component data

– Actions can also be implemented using methods

 Automated Test Design™ © 2011 Conformiq, Inc.

Example Statechart: Sip User Agent Client

 Automated Test Design™ © 2011 Conformiq, Inc.

Example Transition: Call initiation

 Automated Test Design™ © 2011 Conformiq, Inc.

Example QML Method

• Implementation of action to send a SIP INVITE request

via the network interface:

 void sendInvite() {

 // construct first SIP request value by calling ‘getRequestBase’ method

 SipRequest theINVITE = getRequestBase("INVITE", newCallId());

 // store ‘from’ header tag in component variable for later checks

 localTag = theINVITE.from.tag;

 // overwrite contact header and message body default values

 theINVITE.contact = "sip:" + getCallerSipUri();

 theINVITE.msgbody = newMsgBody();

 netOut.send(theINVITE);

 }

 Automated Test Design™ © 2011 Conformiq, Inc.

A Requirement in the Model

 Automated Test Design™ © 2011 Conformiq, Inc.

Loading the Model

 Automated Test Design™ © 2011 Conformiq, Inc.

Modeling Summary

• Functional models have structural and behavioral
aspects

• System interface is defined via ports and message types

• Handling of inputs and computation of outputs is defined
in triggers & actions on Statechart transitions

• Start modeling with a high level of abstraction, e.g., no
message parameters, then refine model structure and
behavior iteratively

• Model only information required by aspect to be tested

 Automated Test Design™ © 2011 Conformiq, Inc.

TEST GENERATION

 Automated Test Design™ © 2011 Conformiq, Inc.

Expectations from Test Generation

• Complete message flow, data, timing, and oracle

• Test generation (regardless of complexity) within minutes

• At least one test per requirement

• Exercise all (possible) SUT source code

• Shortest possible test set execution time

• Do not test ”the same thing” multiple times

• Automatic test maintainence

 Automated Test Design™ © 2011 Conformiq, Inc.

Test Generation at a Second Glance

• Big test sets require a lot of validation

– There needs to be a way to limit test set size

• Where is the test that covers criteria XYZ?

– Generation results must be easily comprehensible

• Even at 100% coverage my test is not in the test set

– Optimal test sets do not always fulfill all expectations

– Users must be able to affect/guide test generation

 Automated Test Design™ © 2011 Conformiq, Inc.

But Most Important at the End is …

 … good support for sharing and communicating test

generation results (and models) with testers and others !

Specification

[Architect]

”Has 4 legs”

Implemented

[Developer]

Modeled/Tested

[Tester]

Needed

[Customer]

http://2.bp.blogspot.com/-CiPWCukYroA/Tg3gtIv_8OI/AAAAAAAAATM/I1XGWa7hyHM/s1600/cow3.gif
http://www.supercoloring.com/pages/kitchen-table/

 Automated Test Design™ © 2011 Conformiq, Inc.

From Modeling to Black-Box Testing

(System)

Model

Environment

Real

System

Goals

 …

 …

 …

Synthesize

 Automated Test Design™ © 2011 Conformiq, Inc.

Example Model Coverage Criteria

Name Explanation Typically Used For

Requirements Coverage Cover “requirement” statements

Basic test generation

Use Case Coverage Cover independently specified use cases

State Coverage Cover states of every state chart

Transition Coverage Cover transitions of every state chart

Condition Coverage Cover “true” and “false” branches of conditional constructs

Parallel Transition Coverage
Cover all interleavings of independent transitions in multi

component models

Extended test generation
Data Coverage Cover all pairs or all combinations of data values

2-Transition Coverage Cover combinations of entry/exit transitions of all states

Atomic Condition Coverage Cover all “true” and “false” evaluations of Boolean expressions

Boundary Value Analysis Cover integer boundary conditions

All Paths - States Cover all possible states sequences
Exhaustive test generation

All Paths - Transitions Cover all possible transition sequences

 Automated Test Design™ © 2011 Conformiq, Inc.

How does Test Generation work?

• Different technologies available to generate tests
– Graph traversal vs. symbolic model checking plus constraint solving

• Different approaches how to expose users to results

• What should be expected from a MBT tool today
– Generation of complete message flow, test data, timing, and oracle

– Support for specification of coverage criteria to control test suite size

– Options for generating different types of test sets

– Incremental & deterministic test generation

– Automatic marking/elimination of invalid tests in re-generations

 Automated Test Design™ © 2011 Conformiq, Inc.

Generating Tests from Models

 Automated Test Design™ © 2011 Conformiq, Inc.

Making Sense of Generation Results

• Integrated graphical IDEs with interconnected views

• Ability to influence test case naming – a first glance should

give a good idea

• Traceability matrix linking coverage criteria to tests

• Specific test preview of message flow, test data, and timing

• Highlighting of test and criteria in the (system) model

• Enable analysis of tests and model defects via debugger

 Automated Test Design™ © 2011 Conformiq, Inc.

Example Test Review

 Automated Test Design™ © 2011 Conformiq, Inc.

Traceability Matrix

 Automated Test Design™ © 2011 Conformiq, Inc.

From Test Generation to Test Execution

• Modeling and test generation is iterative process

– Regular reviews of model & tests with stakeholders

locate problems prior to test execution

• Integration with automated test execution

frameworks is realized via scripting backends

– Full test script generation in case interfaces of

model and test framework match

– In other cases test scripts with stubs for a generic

mapping to a test framework

– Same mechanism can also generate documentation

• Open API allows creation of own or adaptation of

generic backends for any testing framework

Test Execution Engine

System Under Test

Test Adaptation

Generated Test

Test Script

Test Framework

Render

 Automated Test Design™ © 2011 Conformiq, Inc.

Rendering of Tests

 Automated Test Design™ © 2011 Conformiq, Inc.

Example Manual Test Report

 Automated Test Design™ © 2011 Conformiq, Inc.

Example Test Script with Stubs

 Automated Test Design™ © 2011 Conformiq, Inc.

Test Generation Summary

• The ability to generate tests automatically is a good start

– Equally important however is the ability to control & guide test

generation and to be able to understand the purpose of a test

– Coverage criteria selection is one way of steering test generation

• Model and test review clear up misunderstandings &

defects earlier where it is (much) cheaper to fix them

– Makes test quality much higher during test execution

• Finally tests can then be rendered for test execution to

any desired scripting language or documentation format

 Automated Test Design™ © 2011 Conformiq, Inc.

Thank you for your attention!

stephan.schulz@conformiq.com

www.conformiq.com

mailto:stephan.Schulz@conformiq.com
http://www.conformiq.com/

