
Experiences from Model-Based GUI testing

of Smartphone Applications

Mika Katara

Department of Software Systems

Tampere University of Technology, Finland

first.lastname@tut.fi

Special thanks to the former TEMA team at Tampere University of Technology: Henri Heiskanen, Antti Jääskeläinen,

Mika Maunumaa, Mika Mäenpää, Antti Nieminen, Tuomas Pajunen, Tommi Takala, and Heikki Virtanen

What are We Looking For?

2

Experiences from Model-Based GUI testing of Smartphone Applications, Mika Katara 20/10/2011

Bugs that affect smartphone users, i.e. almost everybody

How?

On-line model based testing using models describing what the user

can do with the GUI and how the apps interact

3

Experiences from Model-Based GUI testing of Smartphone Applications, Mika Katara 20/10/2011

Obstacles and Opportunities for MBT

Practitioners are willing to try out new tools that might help them

Wide variety of open-source testing tools already used (agile unit

testing, continuous integration, etc.)

Practitioners are not willing to invest heavily on modeling or

specification in general

When quality is not a prime consideration, conventional testing

methods seem to work reasonably well

There are areas that are very hard to test using conventional

methods (static and linear test cases)

Many applications running concurrently and sharing resources may

suggest concurrency problems

Protecting the brand: End users who experience application hang-

up/crashing problems etc. may post their bad experiences to the

Internet

4

Experiences from Model-Based GUI testing of Smartphone Applications, Mika Katara 20/10/2011

TEMA Toolset – Hiding Innate MBT

Complexity

Since testers don’t want to directly deal with models or test

generation algorithms, we have abstracted the algorithms out in

our web GUI

TEMA web GUI is testers’ interface with the test server, used for

designing and managing test configurations, running and tracking

actual tests, and managing test model packages

This all boils down to allowing testers to just choose what they want

to test and what physical device they want to run their tests on

Organizational impact:

Need for test design has diminished, only test configurations (that may

involve use cases) have to be created

Modeling is imperative

High-level models can be reused, but domain-specific refinements

must be created case by case for each domain

5

Experiences from Model-Based GUI testing of Smartphone Applications, Mika Katara 20/10/2011

TEMA Tool Architecture

SUT 1

SUT N

Model

Designer

WWW GUI

Test

Configurer

Test Engine

Model

Composer

Adapter
Connectivity

Component

Model Utilities

Video

Recorder
Debug Tools

Test

Configuration

Configured

Model

Test Model

Test Log

Test Run

Footage

Test Execution

Script

Test

Designer

Test

Debugger

Test

Modeler

Test

Engineer

Chief

Tester

Keyword Execution

Test Generation

Test Modeling

Test Design

Test Debugging

Test

Controller

Diagram symbols

Tool Artifact
Data

Control Uses

Model Library

Refinement

Machines

Action

Machines

Data

Tables

Localization

Tables

21/03/2011 TESTBEDS 2011, Mika Katara

Test Suite Maintenance

A major problem with conventional test automation, especially in

the GUI context, is the maintenance of the test suites

 In the worst case, you have to modify each test in your suite

whenever something changes in the SUT (System Under Test)

 Using models, test suites are generated automatically, and you

only have to change your model

 Or few of the component models

7

Experiences from Model-Based GUI testing of Smartphone Applications, Mika Katara 20/10/2011

Keywords and Action Words

Action words describe the user’s actions at a high level of

abstraction

Send an SMS, answer a call, add a new contact etc.

Used in high-level models (action machines)

An action word is translated to a sequence of keywords

(keystrokes) for menu navigation, text inputting etc.

Some action words can have multiple keyword sequences

implementing them

Keywords are used in low-level models (refinement machines)

8

Experiences from Model-Based GUI testing of Smartphone Applications, Mika Katara 20/10/2011

To achieve a good separation of concerns, we use action words

and keywords in separate models at different levels of abstraction

Action machines containing action words are composed with

refinement machines containing key words

The resulting composite model is input to the tools executing the

model i.e., generating the test cases

 To avoid state space explosion, this has been implemented using

an on-the-fly algorithm

9

Experiences from Model-Based GUI testing of Smartphone Applications, Mika Katara 20/10/2011

10

Experiences from Model-Based GUI testing of Smartphone Applications, Mika Katara 20/10/2011

Example Test Models

S60 Camera application, action machine

Illustration: Antti Kervinen/TUT

11

Experiences from Model-Based GUI testing of Smartphone Applications, Mika Katara 20/10/2011

S60 Camera application, refinement machine

Illustration: Antti Kervinen/TUT

Debugging Long Error Traces

Debugging is a major practical problem

This is emphasized in online MBT, since error

traces can be very long

Solutions:

1) Test Run Video Synchronization with Log Data

2) Trace Incrementation

Based on the concept of gradually

executing a failed test run in subsets

12

Experiences from Model-Based GUI testing of Smartphone Applications, Mika Katara 20/10/2011

Domains Conquered

We have been primarily focusing on mobile GUI testing, but our

approach is also suited to other domains

Our model library presently holds models for the following domains:

S60

Over 100 action machines, almost 1000 action words

Estimated number of states if we would compose all the models in

parallel: at least 10^19 states

Mobile Linux

Android

Java Swing

Action machines (high-level models) have been reused for different

domains

13

Experiences from Model-Based GUI testing of Smartphone Applications, Mika Katara 20/10/2011

Conclusions

Modeling typically uncovers more bugs and quirks than test

execution itself

Reverse-engineering vs. use of system models

Lack of precise enough GUI specifications

Agile trend hasn’t made matters easier….

It is possible to find bugs in already well-tested applications

Mostly minor or cosmetic, but also serious (system errors, etc.)

A talented student was able to create the first version of the S60

model library in 2 months (+1 month for debugging &

maintenance)

Automatic GUI testing requires mature test automation support

from the domain

14

Experiences from Model-Based GUI testing of Smartphone Applications, Mika Katara 20/10/2011

Case: S60 (Project Starting Point)

Built-in applications in S60 smartphones, such as Gallery, Music Player, Flash
Player, Notes, Voice Recorder, Contacts and Messaging

Keyword execution using proprietary and commercial test automation tools
Optical character recognition was used for verifications, which caused some reliability and

maintenance issues

21 defects of different severities and priorities were found
Some of these defects existed in more than one smartphone model

The most severe of the defects caused the phone to hang with “System error” message on the
display

About two thirds of the defects were discovered while modeling (reverse engineering), and the
remaining third by execution (dynamic testing)

Most of the defects had already been previously found in traditional testing (both manual and
automatic test execution), but they had not been fixed for some reason

However, there were also some that were totally new

Many of the defects were related to concurrency issues: performing some multimedia-related
functionality in one application and then switching to another application caused unexpected
behavior in some circumstances

In addition to defects found in applications, some were found in test automation tools, which was
considered rather surprising, as these tools were quite mature

20/10/2011

15

Experiences from Model-Based GUI testing of Smartphone Applications, Mika Katara

Case: Mobile Linux

Media player application by Ixonos

New modeling challenge: real-time requirements

Playing videos, fast-forwarding, rewinding, pausing…

Although it was difficult, real-time support was eventually

accomplished at model level

Keyword execution using Linux accessibility features

API access to GUI components

Easier and more reliable than in S60 case

Some minor bugs were found (both during modeling and

execution)

20/10/2011

16

Experiences from Model-Based GUI testing of Smartphone Applications, Mika Katara

Case: Android Phone

Messaging, Contacts and Calendar applications

Action machines created for S60 were reused

Calendar was modeled with ATS4 AppModel and converted to TEMA

models with an automatic converter

Keyword execution was based on A-Tool by Symbio

Optical character recognition was implemented with MS Office

Imaging, which could have been more reliable

Some bugs were found (both during modeling and execution)

20/10/2011

17

Experiences from Model-Based GUI testing of Smartphone Applications, Mika Katara

Case: Android Revisited

BBC News application

RSS reader optimized for BBC news feeds

Self-made test automation for the emulator

Based on API access -> improved reliability

Modeling the BBC News (16 state machines) took a few

days time

With usability improvements in the modeling tool this could

be made even faster

During the case, the application was updated thrice and the

platform once (2.1 → 2.2)

Maintaining the models was fast – no need to update a huge

set of test cases

20/10/2011

18

Experiences from Model-Based GUI testing of Smartphone Applications, Mika Katara

Random mode was used in the test generation

 Setting up the test run takes practically no time at all

 240 separate test runs lasting over 115 hours in total

 27 000 action words – 50 000 keywords

 The longest run lasted over three hours

 Average duration was 30 minutes

 Emulator lost Internet connection in every couple of hours

19

Experiences from Model-Based GUI testing of Smartphone Applications, Mika Katara 20/10/2011

Bugs Found

14 bugs found in total

8 during modeling

6 in random test execution

from the model

Two of the bugs caused the

application to crash

Even quite small

inconsistencies were found

– easily missed by a

manual tester

20

Experiences from Model-Based GUI testing of Smartphone Applications, Mika Katara 20/10/2011

21

18.9.2011

Keyword Execution with a Robot

Solution for the automated

testing of touch display

devices

Simulates real human user

interaction with SUT

The applications are tested in

actual devices

Different sets of robot fingers for

device actuation

Visual verification of the results

with a camera and OCV

(Optical Character Verification)

Easy integration with TEMA

Toolset

For more information, visit

http://www.optofidelity.com

Thank You!

22

Experiences from Model-Based GUI testing of Smartphone Applications, Mika Katara 20/10/2011

Acknowledgements for financiers:

Tekes, Nokia, Ixonos, Symbio, Cybercom Plenware, F-Secure,

Qentinel, Prove Expertise, Academy of Finland (grant #121012)

